This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Norm expressed in terms of inner product. (Contributed by NM, 11-Sep-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipid.1 | |- X = ( BaseSet ` U ) |
|
| ipid.6 | |- N = ( normCV ` U ) |
||
| ipid.7 | |- P = ( .iOLD ` U ) |
||
| Assertion | ipnm | |- ( ( U e. NrmCVec /\ A e. X ) -> ( N ` A ) = ( sqrt ` ( A P A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipid.1 | |- X = ( BaseSet ` U ) |
|
| 2 | ipid.6 | |- N = ( normCV ` U ) |
|
| 3 | ipid.7 | |- P = ( .iOLD ` U ) |
|
| 4 | 1 2 3 | ipidsq | |- ( ( U e. NrmCVec /\ A e. X ) -> ( A P A ) = ( ( N ` A ) ^ 2 ) ) |
| 5 | 4 | fveq2d | |- ( ( U e. NrmCVec /\ A e. X ) -> ( sqrt ` ( A P A ) ) = ( sqrt ` ( ( N ` A ) ^ 2 ) ) ) |
| 6 | 1 2 | nvcl | |- ( ( U e. NrmCVec /\ A e. X ) -> ( N ` A ) e. RR ) |
| 7 | 1 2 | nvge0 | |- ( ( U e. NrmCVec /\ A e. X ) -> 0 <_ ( N ` A ) ) |
| 8 | 6 7 | sqrtsqd | |- ( ( U e. NrmCVec /\ A e. X ) -> ( sqrt ` ( ( N ` A ) ^ 2 ) ) = ( N ` A ) ) |
| 9 | 5 8 | eqtr2d | |- ( ( U e. NrmCVec /\ A e. X ) -> ( N ` A ) = ( sqrt ` ( A P A ) ) ) |