This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Version of iotaval using df-iota instead of dfiota2 . (Contributed by SN, 6-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iotaval2 | ⊢ ( { 𝑥 ∣ 𝜑 } = { 𝑦 } → ( ℩ 𝑥 𝜑 ) = 𝑦 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iota | ⊢ ( ℩ 𝑥 𝜑 ) = ∪ { 𝑤 ∣ { 𝑥 ∣ 𝜑 } = { 𝑤 } } | |
| 2 | eqeq1 | ⊢ ( { 𝑥 ∣ 𝜑 } = { 𝑦 } → ( { 𝑥 ∣ 𝜑 } = { 𝑤 } ↔ { 𝑦 } = { 𝑤 } ) ) | |
| 3 | sneqbg | ⊢ ( 𝑦 ∈ V → ( { 𝑦 } = { 𝑤 } ↔ 𝑦 = 𝑤 ) ) | |
| 4 | 3 | elv | ⊢ ( { 𝑦 } = { 𝑤 } ↔ 𝑦 = 𝑤 ) |
| 5 | equcom | ⊢ ( 𝑦 = 𝑤 ↔ 𝑤 = 𝑦 ) | |
| 6 | 4 5 | bitri | ⊢ ( { 𝑦 } = { 𝑤 } ↔ 𝑤 = 𝑦 ) |
| 7 | 2 6 | bitrdi | ⊢ ( { 𝑥 ∣ 𝜑 } = { 𝑦 } → ( { 𝑥 ∣ 𝜑 } = { 𝑤 } ↔ 𝑤 = 𝑦 ) ) |
| 8 | 7 | alrimiv | ⊢ ( { 𝑥 ∣ 𝜑 } = { 𝑦 } → ∀ 𝑤 ( { 𝑥 ∣ 𝜑 } = { 𝑤 } ↔ 𝑤 = 𝑦 ) ) |
| 9 | uniabio | ⊢ ( ∀ 𝑤 ( { 𝑥 ∣ 𝜑 } = { 𝑤 } ↔ 𝑤 = 𝑦 ) → ∪ { 𝑤 ∣ { 𝑥 ∣ 𝜑 } = { 𝑤 } } = 𝑦 ) | |
| 10 | 8 9 | syl | ⊢ ( { 𝑥 ∣ 𝜑 } = { 𝑦 } → ∪ { 𝑤 ∣ { 𝑥 ∣ 𝜑 } = { 𝑤 } } = 𝑦 ) |
| 11 | 1 10 | eqtrid | ⊢ ( { 𝑥 ∣ 𝜑 } = { 𝑦 } → ( ℩ 𝑥 𝜑 ) = 𝑦 ) |