This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *14.23 in WhiteheadRussell p. 191. (Contributed by Andrew Salmon, 12-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iota4an | ⊢ ( ∃! 𝑥 ( 𝜑 ∧ 𝜓 ) → [ ( ℩ 𝑥 ( 𝜑 ∧ 𝜓 ) ) / 𝑥 ] 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iota4 | ⊢ ( ∃! 𝑥 ( 𝜑 ∧ 𝜓 ) → [ ( ℩ 𝑥 ( 𝜑 ∧ 𝜓 ) ) / 𝑥 ] ( 𝜑 ∧ 𝜓 ) ) | |
| 2 | iotaex | ⊢ ( ℩ 𝑥 ( 𝜑 ∧ 𝜓 ) ) ∈ V | |
| 3 | simpl | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜑 ) | |
| 4 | 3 | sbcth | ⊢ ( ( ℩ 𝑥 ( 𝜑 ∧ 𝜓 ) ) ∈ V → [ ( ℩ 𝑥 ( 𝜑 ∧ 𝜓 ) ) / 𝑥 ] ( ( 𝜑 ∧ 𝜓 ) → 𝜑 ) ) |
| 5 | 2 4 | ax-mp | ⊢ [ ( ℩ 𝑥 ( 𝜑 ∧ 𝜓 ) ) / 𝑥 ] ( ( 𝜑 ∧ 𝜓 ) → 𝜑 ) |
| 6 | sbcimg | ⊢ ( ( ℩ 𝑥 ( 𝜑 ∧ 𝜓 ) ) ∈ V → ( [ ( ℩ 𝑥 ( 𝜑 ∧ 𝜓 ) ) / 𝑥 ] ( ( 𝜑 ∧ 𝜓 ) → 𝜑 ) ↔ ( [ ( ℩ 𝑥 ( 𝜑 ∧ 𝜓 ) ) / 𝑥 ] ( 𝜑 ∧ 𝜓 ) → [ ( ℩ 𝑥 ( 𝜑 ∧ 𝜓 ) ) / 𝑥 ] 𝜑 ) ) ) | |
| 7 | 2 6 | ax-mp | ⊢ ( [ ( ℩ 𝑥 ( 𝜑 ∧ 𝜓 ) ) / 𝑥 ] ( ( 𝜑 ∧ 𝜓 ) → 𝜑 ) ↔ ( [ ( ℩ 𝑥 ( 𝜑 ∧ 𝜓 ) ) / 𝑥 ] ( 𝜑 ∧ 𝜓 ) → [ ( ℩ 𝑥 ( 𝜑 ∧ 𝜓 ) ) / 𝑥 ] 𝜑 ) ) |
| 8 | 5 7 | mpbi | ⊢ ( [ ( ℩ 𝑥 ( 𝜑 ∧ 𝜓 ) ) / 𝑥 ] ( 𝜑 ∧ 𝜓 ) → [ ( ℩ 𝑥 ( 𝜑 ∧ 𝜓 ) ) / 𝑥 ] 𝜑 ) |
| 9 | 1 8 | syl | ⊢ ( ∃! 𝑥 ( 𝜑 ∧ 𝜓 ) → [ ( ℩ 𝑥 ( 𝜑 ∧ 𝜓 ) ) / 𝑥 ] 𝜑 ) |