This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *14.23 in WhiteheadRussell p. 191. (Contributed by Andrew Salmon, 12-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iota4an | |- ( E! x ( ph /\ ps ) -> [. ( iota x ( ph /\ ps ) ) / x ]. ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iota4 | |- ( E! x ( ph /\ ps ) -> [. ( iota x ( ph /\ ps ) ) / x ]. ( ph /\ ps ) ) |
|
| 2 | iotaex | |- ( iota x ( ph /\ ps ) ) e. _V |
|
| 3 | simpl | |- ( ( ph /\ ps ) -> ph ) |
|
| 4 | 3 | sbcth | |- ( ( iota x ( ph /\ ps ) ) e. _V -> [. ( iota x ( ph /\ ps ) ) / x ]. ( ( ph /\ ps ) -> ph ) ) |
| 5 | 2 4 | ax-mp | |- [. ( iota x ( ph /\ ps ) ) / x ]. ( ( ph /\ ps ) -> ph ) |
| 6 | sbcimg | |- ( ( iota x ( ph /\ ps ) ) e. _V -> ( [. ( iota x ( ph /\ ps ) ) / x ]. ( ( ph /\ ps ) -> ph ) <-> ( [. ( iota x ( ph /\ ps ) ) / x ]. ( ph /\ ps ) -> [. ( iota x ( ph /\ ps ) ) / x ]. ph ) ) ) |
|
| 7 | 2 6 | ax-mp | |- ( [. ( iota x ( ph /\ ps ) ) / x ]. ( ( ph /\ ps ) -> ph ) <-> ( [. ( iota x ( ph /\ ps ) ) / x ]. ( ph /\ ps ) -> [. ( iota x ( ph /\ ps ) ) / x ]. ph ) ) |
| 8 | 5 7 | mpbi | |- ( [. ( iota x ( ph /\ ps ) ) / x ]. ( ph /\ ps ) -> [. ( iota x ( ph /\ ps ) ) / x ]. ph ) |
| 9 | 1 8 | syl | |- ( E! x ( ph /\ ps ) -> [. ( iota x ( ph /\ ps ) ) / x ]. ph ) |