This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the open interval function. (Contributed by NM, 6-Feb-2007) (Revised by Mario Carneiro, 3-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iooval2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 (,) 𝐵 ) = { 𝑥 ∈ ℝ ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iooval | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 (,) 𝐵 ) = { 𝑥 ∈ ℝ* ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } ) | |
| 2 | elioore | ⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 𝑥 ∈ ℝ ) | |
| 3 | 2 | ssriv | ⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℝ |
| 4 | 1 3 | eqsstrrdi | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → { 𝑥 ∈ ℝ* ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } ⊆ ℝ ) |
| 5 | dfss2 | ⊢ ( { 𝑥 ∈ ℝ* ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } ⊆ ℝ ↔ ( { 𝑥 ∈ ℝ* ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } ∩ ℝ ) = { 𝑥 ∈ ℝ* ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } ) | |
| 6 | 4 5 | sylib | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( { 𝑥 ∈ ℝ* ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } ∩ ℝ ) = { 𝑥 ∈ ℝ* ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } ) |
| 7 | inrab2 | ⊢ ( { 𝑥 ∈ ℝ* ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } ∩ ℝ ) = { 𝑥 ∈ ( ℝ* ∩ ℝ ) ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } | |
| 8 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 9 | sseqin2 | ⊢ ( ℝ ⊆ ℝ* ↔ ( ℝ* ∩ ℝ ) = ℝ ) | |
| 10 | 8 9 | mpbi | ⊢ ( ℝ* ∩ ℝ ) = ℝ |
| 11 | 10 | rabeqi | ⊢ { 𝑥 ∈ ( ℝ* ∩ ℝ ) ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } = { 𝑥 ∈ ℝ ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } |
| 12 | 7 11 | eqtri | ⊢ ( { 𝑥 ∈ ℝ* ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } ∩ ℝ ) = { 𝑥 ∈ ℝ ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } |
| 13 | 6 12 | eqtr3di | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → { 𝑥 ∈ ℝ* ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } = { 𝑥 ∈ ℝ ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } ) |
| 14 | 1 13 | eqtrd | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 (,) 𝐵 ) = { 𝑥 ∈ ℝ ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } ) |