This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the open interval function. (Contributed by NM, 6-Feb-2007) (Revised by Mario Carneiro, 3-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iooval2 | |- ( ( A e. RR* /\ B e. RR* ) -> ( A (,) B ) = { x e. RR | ( A < x /\ x < B ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iooval | |- ( ( A e. RR* /\ B e. RR* ) -> ( A (,) B ) = { x e. RR* | ( A < x /\ x < B ) } ) |
|
| 2 | elioore | |- ( x e. ( A (,) B ) -> x e. RR ) |
|
| 3 | 2 | ssriv | |- ( A (,) B ) C_ RR |
| 4 | 1 3 | eqsstrrdi | |- ( ( A e. RR* /\ B e. RR* ) -> { x e. RR* | ( A < x /\ x < B ) } C_ RR ) |
| 5 | dfss2 | |- ( { x e. RR* | ( A < x /\ x < B ) } C_ RR <-> ( { x e. RR* | ( A < x /\ x < B ) } i^i RR ) = { x e. RR* | ( A < x /\ x < B ) } ) |
|
| 6 | 4 5 | sylib | |- ( ( A e. RR* /\ B e. RR* ) -> ( { x e. RR* | ( A < x /\ x < B ) } i^i RR ) = { x e. RR* | ( A < x /\ x < B ) } ) |
| 7 | inrab2 | |- ( { x e. RR* | ( A < x /\ x < B ) } i^i RR ) = { x e. ( RR* i^i RR ) | ( A < x /\ x < B ) } |
|
| 8 | ressxr | |- RR C_ RR* |
|
| 9 | sseqin2 | |- ( RR C_ RR* <-> ( RR* i^i RR ) = RR ) |
|
| 10 | 8 9 | mpbi | |- ( RR* i^i RR ) = RR |
| 11 | 10 | rabeqi | |- { x e. ( RR* i^i RR ) | ( A < x /\ x < B ) } = { x e. RR | ( A < x /\ x < B ) } |
| 12 | 7 11 | eqtri | |- ( { x e. RR* | ( A < x /\ x < B ) } i^i RR ) = { x e. RR | ( A < x /\ x < B ) } |
| 13 | 6 12 | eqtr3di | |- ( ( A e. RR* /\ B e. RR* ) -> { x e. RR* | ( A < x /\ x < B ) } = { x e. RR | ( A < x /\ x < B ) } ) |
| 14 | 1 13 | eqtrd | |- ( ( A e. RR* /\ B e. RR* ) -> ( A (,) B ) = { x e. RR | ( A < x /\ x < B ) } ) |