This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An open interval shifted by a real number. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iooshift.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| iooshift.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| iooshift.3 | ⊢ ( 𝜑 → 𝑇 ∈ ℝ ) | ||
| Assertion | iooshift | ⊢ ( 𝜑 → ( ( 𝐴 + 𝑇 ) (,) ( 𝐵 + 𝑇 ) ) = { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) 𝑤 = ( 𝑧 + 𝑇 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iooshift.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | iooshift.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | iooshift.3 | ⊢ ( 𝜑 → 𝑇 ∈ ℝ ) | |
| 4 | eqeq1 | ⊢ ( 𝑤 = 𝑥 → ( 𝑤 = ( 𝑧 + 𝑇 ) ↔ 𝑥 = ( 𝑧 + 𝑇 ) ) ) | |
| 5 | 4 | rexbidv | ⊢ ( 𝑤 = 𝑥 → ( ∃ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) 𝑤 = ( 𝑧 + 𝑇 ) ↔ ∃ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) 𝑥 = ( 𝑧 + 𝑇 ) ) ) |
| 6 | 5 | elrab | ⊢ ( 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) 𝑤 = ( 𝑧 + 𝑇 ) } ↔ ( 𝑥 ∈ ℂ ∧ ∃ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) 𝑥 = ( 𝑧 + 𝑇 ) ) ) |
| 7 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ∃ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) 𝑥 = ( 𝑧 + 𝑇 ) ) ) → ∃ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) 𝑥 = ( 𝑧 + 𝑇 ) ) | |
| 8 | nfv | ⊢ Ⅎ 𝑧 𝜑 | |
| 9 | nfv | ⊢ Ⅎ 𝑧 𝑥 ∈ ℂ | |
| 10 | nfre1 | ⊢ Ⅎ 𝑧 ∃ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) 𝑥 = ( 𝑧 + 𝑇 ) | |
| 11 | 9 10 | nfan | ⊢ Ⅎ 𝑧 ( 𝑥 ∈ ℂ ∧ ∃ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) 𝑥 = ( 𝑧 + 𝑇 ) ) |
| 12 | 8 11 | nfan | ⊢ Ⅎ 𝑧 ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ∃ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) 𝑥 = ( 𝑧 + 𝑇 ) ) ) |
| 13 | nfv | ⊢ Ⅎ 𝑧 𝑥 ∈ ( ( 𝐴 + 𝑇 ) (,) ( 𝐵 + 𝑇 ) ) | |
| 14 | simp3 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝑥 = ( 𝑧 + 𝑇 ) ) → 𝑥 = ( 𝑧 + 𝑇 ) ) | |
| 15 | 1 3 | readdcld | ⊢ ( 𝜑 → ( 𝐴 + 𝑇 ) ∈ ℝ ) |
| 16 | 15 | rexrd | ⊢ ( 𝜑 → ( 𝐴 + 𝑇 ) ∈ ℝ* ) |
| 17 | 16 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐴 + 𝑇 ) ∈ ℝ* ) |
| 18 | 2 3 | readdcld | ⊢ ( 𝜑 → ( 𝐵 + 𝑇 ) ∈ ℝ ) |
| 19 | 18 | rexrd | ⊢ ( 𝜑 → ( 𝐵 + 𝑇 ) ∈ ℝ* ) |
| 20 | 19 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐵 + 𝑇 ) ∈ ℝ* ) |
| 21 | ioossre | ⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℝ | |
| 22 | 21 | a1i | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) |
| 23 | 22 | sselda | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑧 ∈ ℝ ) |
| 24 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑇 ∈ ℝ ) |
| 25 | 23 24 | readdcld | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑧 + 𝑇 ) ∈ ℝ ) |
| 26 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐴 ∈ ℝ ) |
| 27 | 26 | rexrd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐴 ∈ ℝ* ) |
| 28 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐵 ∈ ℝ ) |
| 29 | 28 | rexrd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐵 ∈ ℝ* ) |
| 30 | simpr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) | |
| 31 | ioogtlb | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐴 < 𝑧 ) | |
| 32 | 27 29 30 31 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐴 < 𝑧 ) |
| 33 | 26 23 24 32 | ltadd1dd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐴 + 𝑇 ) < ( 𝑧 + 𝑇 ) ) |
| 34 | iooltub | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑧 < 𝐵 ) | |
| 35 | 27 29 30 34 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑧 < 𝐵 ) |
| 36 | 23 28 24 35 | ltadd1dd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑧 + 𝑇 ) < ( 𝐵 + 𝑇 ) ) |
| 37 | 17 20 25 33 36 | eliood | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑧 + 𝑇 ) ∈ ( ( 𝐴 + 𝑇 ) (,) ( 𝐵 + 𝑇 ) ) ) |
| 38 | 37 | 3adant3 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝑥 = ( 𝑧 + 𝑇 ) ) → ( 𝑧 + 𝑇 ) ∈ ( ( 𝐴 + 𝑇 ) (,) ( 𝐵 + 𝑇 ) ) ) |
| 39 | 14 38 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝑥 = ( 𝑧 + 𝑇 ) ) → 𝑥 ∈ ( ( 𝐴 + 𝑇 ) (,) ( 𝐵 + 𝑇 ) ) ) |
| 40 | 39 | 3exp | ⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝑥 = ( 𝑧 + 𝑇 ) → 𝑥 ∈ ( ( 𝐴 + 𝑇 ) (,) ( 𝐵 + 𝑇 ) ) ) ) ) |
| 41 | 40 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ∃ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) 𝑥 = ( 𝑧 + 𝑇 ) ) ) → ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝑥 = ( 𝑧 + 𝑇 ) → 𝑥 ∈ ( ( 𝐴 + 𝑇 ) (,) ( 𝐵 + 𝑇 ) ) ) ) ) |
| 42 | 12 13 41 | rexlimd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ∃ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) 𝑥 = ( 𝑧 + 𝑇 ) ) ) → ( ∃ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) 𝑥 = ( 𝑧 + 𝑇 ) → 𝑥 ∈ ( ( 𝐴 + 𝑇 ) (,) ( 𝐵 + 𝑇 ) ) ) ) |
| 43 | 7 42 | mpd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ∃ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) 𝑥 = ( 𝑧 + 𝑇 ) ) ) → 𝑥 ∈ ( ( 𝐴 + 𝑇 ) (,) ( 𝐵 + 𝑇 ) ) ) |
| 44 | 6 43 | sylan2b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) 𝑤 = ( 𝑧 + 𝑇 ) } ) → 𝑥 ∈ ( ( 𝐴 + 𝑇 ) (,) ( 𝐵 + 𝑇 ) ) ) |
| 45 | elioore | ⊢ ( 𝑥 ∈ ( ( 𝐴 + 𝑇 ) (,) ( 𝐵 + 𝑇 ) ) → 𝑥 ∈ ℝ ) | |
| 46 | 45 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) (,) ( 𝐵 + 𝑇 ) ) ) → 𝑥 ∈ ℝ ) |
| 47 | 46 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) (,) ( 𝐵 + 𝑇 ) ) ) → 𝑥 ∈ ℂ ) |
| 48 | 1 | rexrd | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 49 | 48 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) (,) ( 𝐵 + 𝑇 ) ) ) → 𝐴 ∈ ℝ* ) |
| 50 | 2 | rexrd | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 51 | 50 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) (,) ( 𝐵 + 𝑇 ) ) ) → 𝐵 ∈ ℝ* ) |
| 52 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) (,) ( 𝐵 + 𝑇 ) ) ) → 𝑇 ∈ ℝ ) |
| 53 | 46 52 | resubcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) (,) ( 𝐵 + 𝑇 ) ) ) → ( 𝑥 − 𝑇 ) ∈ ℝ ) |
| 54 | 1 | recnd | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 55 | 3 | recnd | ⊢ ( 𝜑 → 𝑇 ∈ ℂ ) |
| 56 | 54 55 | pncand | ⊢ ( 𝜑 → ( ( 𝐴 + 𝑇 ) − 𝑇 ) = 𝐴 ) |
| 57 | 56 | eqcomd | ⊢ ( 𝜑 → 𝐴 = ( ( 𝐴 + 𝑇 ) − 𝑇 ) ) |
| 58 | 57 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) (,) ( 𝐵 + 𝑇 ) ) ) → 𝐴 = ( ( 𝐴 + 𝑇 ) − 𝑇 ) ) |
| 59 | 15 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) (,) ( 𝐵 + 𝑇 ) ) ) → ( 𝐴 + 𝑇 ) ∈ ℝ ) |
| 60 | 16 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) (,) ( 𝐵 + 𝑇 ) ) ) → ( 𝐴 + 𝑇 ) ∈ ℝ* ) |
| 61 | 19 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) (,) ( 𝐵 + 𝑇 ) ) ) → ( 𝐵 + 𝑇 ) ∈ ℝ* ) |
| 62 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) (,) ( 𝐵 + 𝑇 ) ) ) → 𝑥 ∈ ( ( 𝐴 + 𝑇 ) (,) ( 𝐵 + 𝑇 ) ) ) | |
| 63 | ioogtlb | ⊢ ( ( ( 𝐴 + 𝑇 ) ∈ ℝ* ∧ ( 𝐵 + 𝑇 ) ∈ ℝ* ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) (,) ( 𝐵 + 𝑇 ) ) ) → ( 𝐴 + 𝑇 ) < 𝑥 ) | |
| 64 | 60 61 62 63 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) (,) ( 𝐵 + 𝑇 ) ) ) → ( 𝐴 + 𝑇 ) < 𝑥 ) |
| 65 | 59 46 52 64 | ltsub1dd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) (,) ( 𝐵 + 𝑇 ) ) ) → ( ( 𝐴 + 𝑇 ) − 𝑇 ) < ( 𝑥 − 𝑇 ) ) |
| 66 | 58 65 | eqbrtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) (,) ( 𝐵 + 𝑇 ) ) ) → 𝐴 < ( 𝑥 − 𝑇 ) ) |
| 67 | 18 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) (,) ( 𝐵 + 𝑇 ) ) ) → ( 𝐵 + 𝑇 ) ∈ ℝ ) |
| 68 | iooltub | ⊢ ( ( ( 𝐴 + 𝑇 ) ∈ ℝ* ∧ ( 𝐵 + 𝑇 ) ∈ ℝ* ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) (,) ( 𝐵 + 𝑇 ) ) ) → 𝑥 < ( 𝐵 + 𝑇 ) ) | |
| 69 | 60 61 62 68 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) (,) ( 𝐵 + 𝑇 ) ) ) → 𝑥 < ( 𝐵 + 𝑇 ) ) |
| 70 | 46 67 52 69 | ltsub1dd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) (,) ( 𝐵 + 𝑇 ) ) ) → ( 𝑥 − 𝑇 ) < ( ( 𝐵 + 𝑇 ) − 𝑇 ) ) |
| 71 | 2 | recnd | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 72 | 71 55 | pncand | ⊢ ( 𝜑 → ( ( 𝐵 + 𝑇 ) − 𝑇 ) = 𝐵 ) |
| 73 | 72 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) (,) ( 𝐵 + 𝑇 ) ) ) → ( ( 𝐵 + 𝑇 ) − 𝑇 ) = 𝐵 ) |
| 74 | 70 73 | breqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) (,) ( 𝐵 + 𝑇 ) ) ) → ( 𝑥 − 𝑇 ) < 𝐵 ) |
| 75 | 49 51 53 66 74 | eliood | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) (,) ( 𝐵 + 𝑇 ) ) ) → ( 𝑥 − 𝑇 ) ∈ ( 𝐴 (,) 𝐵 ) ) |
| 76 | 55 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) (,) ( 𝐵 + 𝑇 ) ) ) → 𝑇 ∈ ℂ ) |
| 77 | 47 76 | npcand | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) (,) ( 𝐵 + 𝑇 ) ) ) → ( ( 𝑥 − 𝑇 ) + 𝑇 ) = 𝑥 ) |
| 78 | 77 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) (,) ( 𝐵 + 𝑇 ) ) ) → 𝑥 = ( ( 𝑥 − 𝑇 ) + 𝑇 ) ) |
| 79 | oveq1 | ⊢ ( 𝑧 = ( 𝑥 − 𝑇 ) → ( 𝑧 + 𝑇 ) = ( ( 𝑥 − 𝑇 ) + 𝑇 ) ) | |
| 80 | 79 | rspceeqv | ⊢ ( ( ( 𝑥 − 𝑇 ) ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝑥 = ( ( 𝑥 − 𝑇 ) + 𝑇 ) ) → ∃ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) 𝑥 = ( 𝑧 + 𝑇 ) ) |
| 81 | 75 78 80 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) (,) ( 𝐵 + 𝑇 ) ) ) → ∃ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) 𝑥 = ( 𝑧 + 𝑇 ) ) |
| 82 | 47 81 6 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) (,) ( 𝐵 + 𝑇 ) ) ) → 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) 𝑤 = ( 𝑧 + 𝑇 ) } ) |
| 83 | 44 82 | impbida | ⊢ ( 𝜑 → ( 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) 𝑤 = ( 𝑧 + 𝑇 ) } ↔ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) (,) ( 𝐵 + 𝑇 ) ) ) ) |
| 84 | 83 | eqrdv | ⊢ ( 𝜑 → { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) 𝑤 = ( 𝑧 + 𝑇 ) } = ( ( 𝐴 + 𝑇 ) (,) ( 𝐵 + 𝑇 ) ) ) |
| 85 | 84 | eqcomd | ⊢ ( 𝜑 → ( ( 𝐴 + 𝑇 ) (,) ( 𝐵 + 𝑇 ) ) = { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) 𝑤 = ( 𝑧 + 𝑇 ) } ) |