This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restricted class abstractions { x e. B | C = y } for distinct y e. A are disjoint. (Contributed by AV, 6-May-2020) (Proof shortened by GG, 26-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | invdisjrab | ⊢ Disj 𝑦 ∈ 𝐴 { 𝑥 ∈ 𝐵 ∣ 𝐶 = 𝑦 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv | ⊢ Ⅎ 𝑥 𝑧 | |
| 2 | nfcv | ⊢ Ⅎ 𝑥 𝐵 | |
| 3 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑧 / 𝑥 ⦌ 𝐶 | |
| 4 | 3 | nfeq1 | ⊢ Ⅎ 𝑥 ⦋ 𝑧 / 𝑥 ⦌ 𝐶 = 𝑦 |
| 5 | csbeq1a | ⊢ ( 𝑥 = 𝑧 → 𝐶 = ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) | |
| 6 | 5 | eqeq1d | ⊢ ( 𝑥 = 𝑧 → ( 𝐶 = 𝑦 ↔ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 = 𝑦 ) ) |
| 7 | 1 2 4 6 | elrabf | ⊢ ( 𝑧 ∈ { 𝑥 ∈ 𝐵 ∣ 𝐶 = 𝑦 } ↔ ( 𝑧 ∈ 𝐵 ∧ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 = 𝑦 ) ) |
| 8 | simprr | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑧 ∈ 𝐵 ∧ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 = 𝑦 ) ) → ⦋ 𝑧 / 𝑥 ⦌ 𝐶 = 𝑦 ) | |
| 9 | 7 8 | sylan2b | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ { 𝑥 ∈ 𝐵 ∣ 𝐶 = 𝑦 } ) → ⦋ 𝑧 / 𝑥 ⦌ 𝐶 = 𝑦 ) |
| 10 | 9 | rgen2 | ⊢ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ { 𝑥 ∈ 𝐵 ∣ 𝐶 = 𝑦 } ⦋ 𝑧 / 𝑥 ⦌ 𝐶 = 𝑦 |
| 11 | invdisj | ⊢ ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ { 𝑥 ∈ 𝐵 ∣ 𝐶 = 𝑦 } ⦋ 𝑧 / 𝑥 ⦌ 𝐶 = 𝑦 → Disj 𝑦 ∈ 𝐴 { 𝑥 ∈ 𝐵 ∣ 𝐶 = 𝑦 } ) | |
| 12 | 10 11 | ax-mp | ⊢ Disj 𝑦 ∈ 𝐴 { 𝑥 ∈ 𝐵 ∣ 𝐶 = 𝑦 } |