This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existential uniqueness of the least upper bound. (Contributed by Zhi Wang, 28-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | intubeu | |- ( C e. B -> ( ( A C_ C /\ A. y e. B ( A C_ y -> C C_ y ) ) <-> C = |^| { x e. B | A C_ x } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssint | |- ( C C_ |^| { x e. B | A C_ x } <-> A. y e. { x e. B | A C_ x } C C_ y ) |
|
| 2 | sseq2 | |- ( x = y -> ( A C_ x <-> A C_ y ) ) |
|
| 3 | 2 | ralrab | |- ( A. y e. { x e. B | A C_ x } C C_ y <-> A. y e. B ( A C_ y -> C C_ y ) ) |
| 4 | 1 3 | bitri | |- ( C C_ |^| { x e. B | A C_ x } <-> A. y e. B ( A C_ y -> C C_ y ) ) |
| 5 | 4 | biimpri | |- ( A. y e. B ( A C_ y -> C C_ y ) -> C C_ |^| { x e. B | A C_ x } ) |
| 6 | 5 | adantl | |- ( ( ( C e. B /\ A C_ C ) /\ A. y e. B ( A C_ y -> C C_ y ) ) -> C C_ |^| { x e. B | A C_ x } ) |
| 7 | sseq2 | |- ( z = C -> ( A C_ z <-> A C_ C ) ) |
|
| 8 | simpll | |- ( ( ( C e. B /\ A C_ C ) /\ A. y e. B ( A C_ y -> C C_ y ) ) -> C e. B ) |
|
| 9 | simplr | |- ( ( ( C e. B /\ A C_ C ) /\ A. y e. B ( A C_ y -> C C_ y ) ) -> A C_ C ) |
|
| 10 | 7 8 9 | elrabd | |- ( ( ( C e. B /\ A C_ C ) /\ A. y e. B ( A C_ y -> C C_ y ) ) -> C e. { z e. B | A C_ z } ) |
| 11 | sseq2 | |- ( z = x -> ( A C_ z <-> A C_ x ) ) |
|
| 12 | 11 | cbvrabv | |- { z e. B | A C_ z } = { x e. B | A C_ x } |
| 13 | 10 12 | eleqtrdi | |- ( ( ( C e. B /\ A C_ C ) /\ A. y e. B ( A C_ y -> C C_ y ) ) -> C e. { x e. B | A C_ x } ) |
| 14 | intss1 | |- ( C e. { x e. B | A C_ x } -> |^| { x e. B | A C_ x } C_ C ) |
|
| 15 | 13 14 | syl | |- ( ( ( C e. B /\ A C_ C ) /\ A. y e. B ( A C_ y -> C C_ y ) ) -> |^| { x e. B | A C_ x } C_ C ) |
| 16 | 6 15 | eqssd | |- ( ( ( C e. B /\ A C_ C ) /\ A. y e. B ( A C_ y -> C C_ y ) ) -> C = |^| { x e. B | A C_ x } ) |
| 17 | 16 | expl | |- ( C e. B -> ( ( A C_ C /\ A. y e. B ( A C_ y -> C C_ y ) ) -> C = |^| { x e. B | A C_ x } ) ) |
| 18 | ssintub | |- A C_ |^| { x e. B | A C_ x } |
|
| 19 | sseq2 | |- ( C = |^| { x e. B | A C_ x } -> ( A C_ C <-> A C_ |^| { x e. B | A C_ x } ) ) |
|
| 20 | 18 19 | mpbiri | |- ( C = |^| { x e. B | A C_ x } -> A C_ C ) |
| 21 | eqimss | |- ( C = |^| { x e. B | A C_ x } -> C C_ |^| { x e. B | A C_ x } ) |
|
| 22 | 21 4 | sylib | |- ( C = |^| { x e. B | A C_ x } -> A. y e. B ( A C_ y -> C C_ y ) ) |
| 23 | 20 22 | jca | |- ( C = |^| { x e. B | A C_ x } -> ( A C_ C /\ A. y e. B ( A C_ y -> C C_ y ) ) ) |
| 24 | 17 23 | impbid1 | |- ( C e. B -> ( ( A C_ C /\ A. y e. B ( A C_ y -> C C_ y ) ) <-> C = |^| { x e. B | A C_ x } ) ) |