This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of membership in a set. (Contributed by NM, 18-Aug-1993) Strengthen from sethood hypothesis to sethood antecedent and avoid ax-12 . (Revised by BJ, 1-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | clel4g | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ∈ 𝐵 ↔ ∀ 𝑥 ( 𝑥 = 𝐵 → 𝐴 ∈ 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisset | ⊢ ( 𝐵 ∈ 𝑉 → ∃ 𝑥 𝑥 = 𝐵 ) | |
| 2 | biimt | ⊢ ( ∃ 𝑥 𝑥 = 𝐵 → ( 𝐴 ∈ 𝐵 ↔ ( ∃ 𝑥 𝑥 = 𝐵 → 𝐴 ∈ 𝐵 ) ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ∈ 𝐵 ↔ ( ∃ 𝑥 𝑥 = 𝐵 → 𝐴 ∈ 𝐵 ) ) ) |
| 4 | 19.23v | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐵 → 𝐴 ∈ 𝐵 ) ↔ ( ∃ 𝑥 𝑥 = 𝐵 → 𝐴 ∈ 𝐵 ) ) | |
| 5 | 3 4 | bitr4di | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ∈ 𝐵 ↔ ∀ 𝑥 ( 𝑥 = 𝐵 → 𝐴 ∈ 𝐵 ) ) ) |
| 6 | eleq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵 ) ) | |
| 7 | 6 | bicomd | ⊢ ( 𝑥 = 𝐵 → ( 𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝑥 ) ) |
| 8 | 7 | pm5.74i | ⊢ ( ( 𝑥 = 𝐵 → 𝐴 ∈ 𝐵 ) ↔ ( 𝑥 = 𝐵 → 𝐴 ∈ 𝑥 ) ) |
| 9 | 8 | albii | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐵 → 𝐴 ∈ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 = 𝐵 → 𝐴 ∈ 𝑥 ) ) |
| 10 | 5 9 | bitrdi | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ∈ 𝐵 ↔ ∀ 𝑥 ( 𝑥 = 𝐵 → 𝐴 ∈ 𝑥 ) ) ) |