This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Absorption of a redundant conjunct in the intersection of a class abstraction. (Contributed by NM, 3-Jul-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | intabs.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
| intabs.2 | |- ( x = |^| { y | ps } -> ( ph <-> ch ) ) |
||
| intabs.3 | |- ( |^| { y | ps } C_ A /\ ch ) |
||
| Assertion | intabs | |- |^| { x | ( x C_ A /\ ph ) } = |^| { x | ph } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intabs.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
| 2 | intabs.2 | |- ( x = |^| { y | ps } -> ( ph <-> ch ) ) |
|
| 3 | intabs.3 | |- ( |^| { y | ps } C_ A /\ ch ) |
|
| 4 | sseq1 | |- ( x = |^| { y | ps } -> ( x C_ A <-> |^| { y | ps } C_ A ) ) |
|
| 5 | 4 2 | anbi12d | |- ( x = |^| { y | ps } -> ( ( x C_ A /\ ph ) <-> ( |^| { y | ps } C_ A /\ ch ) ) ) |
| 6 | 5 3 | intmin3 | |- ( |^| { y | ps } e. _V -> |^| { x | ( x C_ A /\ ph ) } C_ |^| { y | ps } ) |
| 7 | intnex | |- ( -. |^| { y | ps } e. _V <-> |^| { y | ps } = _V ) |
|
| 8 | ssv | |- |^| { x | ( x C_ A /\ ph ) } C_ _V |
|
| 9 | sseq2 | |- ( |^| { y | ps } = _V -> ( |^| { x | ( x C_ A /\ ph ) } C_ |^| { y | ps } <-> |^| { x | ( x C_ A /\ ph ) } C_ _V ) ) |
|
| 10 | 8 9 | mpbiri | |- ( |^| { y | ps } = _V -> |^| { x | ( x C_ A /\ ph ) } C_ |^| { y | ps } ) |
| 11 | 7 10 | sylbi | |- ( -. |^| { y | ps } e. _V -> |^| { x | ( x C_ A /\ ph ) } C_ |^| { y | ps } ) |
| 12 | 6 11 | pm2.61i | |- |^| { x | ( x C_ A /\ ph ) } C_ |^| { y | ps } |
| 13 | 1 | cbvabv | |- { x | ph } = { y | ps } |
| 14 | 13 | inteqi | |- |^| { x | ph } = |^| { y | ps } |
| 15 | 12 14 | sseqtrri | |- |^| { x | ( x C_ A /\ ph ) } C_ |^| { x | ph } |
| 16 | simpr | |- ( ( x C_ A /\ ph ) -> ph ) |
|
| 17 | 16 | ss2abi | |- { x | ( x C_ A /\ ph ) } C_ { x | ph } |
| 18 | intss | |- ( { x | ( x C_ A /\ ph ) } C_ { x | ph } -> |^| { x | ph } C_ |^| { x | ( x C_ A /\ ph ) } ) |
|
| 19 | 17 18 | ax-mp | |- |^| { x | ph } C_ |^| { x | ( x C_ A /\ ph ) } |
| 20 | 15 19 | eqssi | |- |^| { x | ( x C_ A /\ ph ) } = |^| { x | ph } |