This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for initopropdlem , termopropdlem , and zeroopropdlem . (Contributed by Zhi Wang, 26-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | initopropdlemlem.1 | ||
| initopropdlemlem.2 | |||
| initopropdlemlem.3 | |||
| initopropdlemlem.4 | |||
| Assertion | initopropdlemlem |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | initopropdlemlem.1 | ||
| 2 | initopropdlemlem.2 | ||
| 3 | initopropdlemlem.3 | ||
| 4 | initopropdlemlem.4 | ||
| 5 | 3 | sseli | |
| 6 | 2 5 | nsyl | |
| 7 | 1 | fndmi | |
| 8 | 7 | eleq2i | |
| 9 | ndmfv | ||
| 10 | 8 9 | sylnbir | |
| 11 | 6 10 | syl | |
| 12 | 11 | adantr | |
| 13 | 12 4 | eqtr4d | |
| 14 | 11 | adantr | |
| 15 | 7 | eleq2i | |
| 16 | ndmfv | ||
| 17 | 15 16 | sylnbir | |
| 18 | 17 | adantl | |
| 19 | 14 18 | eqtr4d | |
| 20 | 13 19 | pm2.61dan |