This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For an initial object, the identity arrow is the one and only morphism of the object to the object itself. (Contributed by AV, 6-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isinitoi.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| isinitoi.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| isinitoi.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| Assertion | initoid | ⊢ ( ( 𝜑 ∧ 𝑂 ∈ ( InitO ‘ 𝐶 ) ) → ( 𝑂 𝐻 𝑂 ) = { ( ( Id ‘ 𝐶 ) ‘ 𝑂 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isinitoi.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | isinitoi.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 3 | isinitoi.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 4 | 1 2 3 | isinitoi | ⊢ ( ( 𝜑 ∧ 𝑂 ∈ ( InitO ‘ 𝐶 ) ) → ( 𝑂 ∈ 𝐵 ∧ ∀ 𝑜 ∈ 𝐵 ∃! ℎ ℎ ∈ ( 𝑂 𝐻 𝑜 ) ) ) |
| 5 | oveq2 | ⊢ ( 𝑜 = 𝑂 → ( 𝑂 𝐻 𝑜 ) = ( 𝑂 𝐻 𝑂 ) ) | |
| 6 | 5 | eleq2d | ⊢ ( 𝑜 = 𝑂 → ( ℎ ∈ ( 𝑂 𝐻 𝑜 ) ↔ ℎ ∈ ( 𝑂 𝐻 𝑂 ) ) ) |
| 7 | 6 | eubidv | ⊢ ( 𝑜 = 𝑂 → ( ∃! ℎ ℎ ∈ ( 𝑂 𝐻 𝑜 ) ↔ ∃! ℎ ℎ ∈ ( 𝑂 𝐻 𝑂 ) ) ) |
| 8 | 7 | rspcv | ⊢ ( 𝑂 ∈ 𝐵 → ( ∀ 𝑜 ∈ 𝐵 ∃! ℎ ℎ ∈ ( 𝑂 𝐻 𝑜 ) → ∃! ℎ ℎ ∈ ( 𝑂 𝐻 𝑂 ) ) ) |
| 9 | 8 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑂 ∈ ( InitO ‘ 𝐶 ) ) ∧ 𝑂 ∈ 𝐵 ) → ( ∀ 𝑜 ∈ 𝐵 ∃! ℎ ℎ ∈ ( 𝑂 𝐻 𝑜 ) → ∃! ℎ ℎ ∈ ( 𝑂 𝐻 𝑂 ) ) ) |
| 10 | eusn | ⊢ ( ∃! ℎ ℎ ∈ ( 𝑂 𝐻 𝑂 ) ↔ ∃ ℎ ( 𝑂 𝐻 𝑂 ) = { ℎ } ) | |
| 11 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
| 12 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑂 ∈ ( InitO ‘ 𝐶 ) ) ∧ 𝑂 ∈ 𝐵 ) → 𝐶 ∈ Cat ) |
| 13 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑂 ∈ ( InitO ‘ 𝐶 ) ) ∧ 𝑂 ∈ 𝐵 ) → 𝑂 ∈ 𝐵 ) | |
| 14 | 1 2 11 12 13 | catidcl | ⊢ ( ( ( 𝜑 ∧ 𝑂 ∈ ( InitO ‘ 𝐶 ) ) ∧ 𝑂 ∈ 𝐵 ) → ( ( Id ‘ 𝐶 ) ‘ 𝑂 ) ∈ ( 𝑂 𝐻 𝑂 ) ) |
| 15 | fvex | ⊢ ( ( Id ‘ 𝐶 ) ‘ 𝑂 ) ∈ V | |
| 16 | 15 | elsn | ⊢ ( ( ( Id ‘ 𝐶 ) ‘ 𝑂 ) ∈ { ℎ } ↔ ( ( Id ‘ 𝐶 ) ‘ 𝑂 ) = ℎ ) |
| 17 | eqcom | ⊢ ( ( ( Id ‘ 𝐶 ) ‘ 𝑂 ) = ℎ ↔ ℎ = ( ( Id ‘ 𝐶 ) ‘ 𝑂 ) ) | |
| 18 | sneqbg | ⊢ ( ℎ ∈ V → ( { ℎ } = { ( ( Id ‘ 𝐶 ) ‘ 𝑂 ) } ↔ ℎ = ( ( Id ‘ 𝐶 ) ‘ 𝑂 ) ) ) | |
| 19 | 18 | bicomd | ⊢ ( ℎ ∈ V → ( ℎ = ( ( Id ‘ 𝐶 ) ‘ 𝑂 ) ↔ { ℎ } = { ( ( Id ‘ 𝐶 ) ‘ 𝑂 ) } ) ) |
| 20 | 19 | elv | ⊢ ( ℎ = ( ( Id ‘ 𝐶 ) ‘ 𝑂 ) ↔ { ℎ } = { ( ( Id ‘ 𝐶 ) ‘ 𝑂 ) } ) |
| 21 | 16 17 20 | 3bitri | ⊢ ( ( ( Id ‘ 𝐶 ) ‘ 𝑂 ) ∈ { ℎ } ↔ { ℎ } = { ( ( Id ‘ 𝐶 ) ‘ 𝑂 ) } ) |
| 22 | 21 | biimpi | ⊢ ( ( ( Id ‘ 𝐶 ) ‘ 𝑂 ) ∈ { ℎ } → { ℎ } = { ( ( Id ‘ 𝐶 ) ‘ 𝑂 ) } ) |
| 23 | 22 | a1i | ⊢ ( ( 𝑂 𝐻 𝑂 ) = { ℎ } → ( ( ( Id ‘ 𝐶 ) ‘ 𝑂 ) ∈ { ℎ } → { ℎ } = { ( ( Id ‘ 𝐶 ) ‘ 𝑂 ) } ) ) |
| 24 | eleq2 | ⊢ ( ( 𝑂 𝐻 𝑂 ) = { ℎ } → ( ( ( Id ‘ 𝐶 ) ‘ 𝑂 ) ∈ ( 𝑂 𝐻 𝑂 ) ↔ ( ( Id ‘ 𝐶 ) ‘ 𝑂 ) ∈ { ℎ } ) ) | |
| 25 | eqeq1 | ⊢ ( ( 𝑂 𝐻 𝑂 ) = { ℎ } → ( ( 𝑂 𝐻 𝑂 ) = { ( ( Id ‘ 𝐶 ) ‘ 𝑂 ) } ↔ { ℎ } = { ( ( Id ‘ 𝐶 ) ‘ 𝑂 ) } ) ) | |
| 26 | 23 24 25 | 3imtr4d | ⊢ ( ( 𝑂 𝐻 𝑂 ) = { ℎ } → ( ( ( Id ‘ 𝐶 ) ‘ 𝑂 ) ∈ ( 𝑂 𝐻 𝑂 ) → ( 𝑂 𝐻 𝑂 ) = { ( ( Id ‘ 𝐶 ) ‘ 𝑂 ) } ) ) |
| 27 | 14 26 | syl5 | ⊢ ( ( 𝑂 𝐻 𝑂 ) = { ℎ } → ( ( ( 𝜑 ∧ 𝑂 ∈ ( InitO ‘ 𝐶 ) ) ∧ 𝑂 ∈ 𝐵 ) → ( 𝑂 𝐻 𝑂 ) = { ( ( Id ‘ 𝐶 ) ‘ 𝑂 ) } ) ) |
| 28 | 27 | exlimiv | ⊢ ( ∃ ℎ ( 𝑂 𝐻 𝑂 ) = { ℎ } → ( ( ( 𝜑 ∧ 𝑂 ∈ ( InitO ‘ 𝐶 ) ) ∧ 𝑂 ∈ 𝐵 ) → ( 𝑂 𝐻 𝑂 ) = { ( ( Id ‘ 𝐶 ) ‘ 𝑂 ) } ) ) |
| 29 | 28 | com12 | ⊢ ( ( ( 𝜑 ∧ 𝑂 ∈ ( InitO ‘ 𝐶 ) ) ∧ 𝑂 ∈ 𝐵 ) → ( ∃ ℎ ( 𝑂 𝐻 𝑂 ) = { ℎ } → ( 𝑂 𝐻 𝑂 ) = { ( ( Id ‘ 𝐶 ) ‘ 𝑂 ) } ) ) |
| 30 | 10 29 | biimtrid | ⊢ ( ( ( 𝜑 ∧ 𝑂 ∈ ( InitO ‘ 𝐶 ) ) ∧ 𝑂 ∈ 𝐵 ) → ( ∃! ℎ ℎ ∈ ( 𝑂 𝐻 𝑂 ) → ( 𝑂 𝐻 𝑂 ) = { ( ( Id ‘ 𝐶 ) ‘ 𝑂 ) } ) ) |
| 31 | 9 30 | syld | ⊢ ( ( ( 𝜑 ∧ 𝑂 ∈ ( InitO ‘ 𝐶 ) ) ∧ 𝑂 ∈ 𝐵 ) → ( ∀ 𝑜 ∈ 𝐵 ∃! ℎ ℎ ∈ ( 𝑂 𝐻 𝑜 ) → ( 𝑂 𝐻 𝑂 ) = { ( ( Id ‘ 𝐶 ) ‘ 𝑂 ) } ) ) |
| 32 | 31 | expimpd | ⊢ ( ( 𝜑 ∧ 𝑂 ∈ ( InitO ‘ 𝐶 ) ) → ( ( 𝑂 ∈ 𝐵 ∧ ∀ 𝑜 ∈ 𝐵 ∃! ℎ ℎ ∈ ( 𝑂 𝐻 𝑜 ) ) → ( 𝑂 𝐻 𝑂 ) = { ( ( Id ‘ 𝐶 ) ‘ 𝑂 ) } ) ) |
| 33 | 4 32 | mpd | ⊢ ( ( 𝜑 ∧ 𝑂 ∈ ( InitO ‘ 𝐶 ) ) → ( 𝑂 𝐻 𝑂 ) = { ( ( Id ‘ 𝐶 ) ‘ 𝑂 ) } ) |