This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 0 for initoeu2 . (Contributed by AV, 9-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | initoeu1.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| initoeu1.a | ⊢ ( 𝜑 → 𝐴 ∈ ( InitO ‘ 𝐶 ) ) | ||
| initoeu2lem.x | ⊢ 𝑋 = ( Base ‘ 𝐶 ) | ||
| initoeu2lem.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| initoeu2lem.i | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | ||
| initoeu2lem.o | ⊢ ⚬ = ( comp ‘ 𝐶 ) | ||
| Assertion | initoeu2lem0 | ⊢ ( ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ∧ ( 𝐾 ∈ ( 𝐵 𝐼 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 𝐻 𝐷 ) ∧ 𝐺 ∈ ( 𝐵 𝐻 𝐷 ) ) ∧ ( ( 𝐹 ( 〈 𝐵 , 𝐴 〉 ⚬ 𝐷 ) 𝐾 ) ( 〈 𝐴 , 𝐵 〉 ⚬ 𝐷 ) ( ( 𝐵 ( Inv ‘ 𝐶 ) 𝐴 ) ‘ 𝐾 ) ) = ( 𝐺 ( 〈 𝐴 , 𝐵 〉 ⚬ 𝐷 ) ( ( 𝐵 ( Inv ‘ 𝐶 ) 𝐴 ) ‘ 𝐾 ) ) ) → 𝐺 = ( 𝐹 ( 〈 𝐵 , 𝐴 〉 ⚬ 𝐷 ) 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | initoeu1.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 2 | initoeu1.a | ⊢ ( 𝜑 → 𝐴 ∈ ( InitO ‘ 𝐶 ) ) | |
| 3 | initoeu2lem.x | ⊢ 𝑋 = ( Base ‘ 𝐶 ) | |
| 4 | initoeu2lem.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 5 | initoeu2lem.i | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | |
| 6 | initoeu2lem.o | ⊢ ⚬ = ( comp ‘ 𝐶 ) | |
| 7 | 3simpa | ⊢ ( ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ∧ ( 𝐾 ∈ ( 𝐵 𝐼 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 𝐻 𝐷 ) ∧ 𝐺 ∈ ( 𝐵 𝐻 𝐷 ) ) ∧ ( ( 𝐹 ( 〈 𝐵 , 𝐴 〉 ⚬ 𝐷 ) 𝐾 ) ( 〈 𝐴 , 𝐵 〉 ⚬ 𝐷 ) ( ( 𝐵 ( Inv ‘ 𝐶 ) 𝐴 ) ‘ 𝐾 ) ) = ( 𝐺 ( 〈 𝐴 , 𝐵 〉 ⚬ 𝐷 ) ( ( 𝐵 ( Inv ‘ 𝐶 ) 𝐴 ) ‘ 𝐾 ) ) ) → ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ∧ ( 𝐾 ∈ ( 𝐵 𝐼 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 𝐻 𝐷 ) ∧ 𝐺 ∈ ( 𝐵 𝐻 𝐷 ) ) ) ) | |
| 8 | simp3 | ⊢ ( ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ∧ ( 𝐾 ∈ ( 𝐵 𝐼 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 𝐻 𝐷 ) ∧ 𝐺 ∈ ( 𝐵 𝐻 𝐷 ) ) ∧ ( ( 𝐹 ( 〈 𝐵 , 𝐴 〉 ⚬ 𝐷 ) 𝐾 ) ( 〈 𝐴 , 𝐵 〉 ⚬ 𝐷 ) ( ( 𝐵 ( Inv ‘ 𝐶 ) 𝐴 ) ‘ 𝐾 ) ) = ( 𝐺 ( 〈 𝐴 , 𝐵 〉 ⚬ 𝐷 ) ( ( 𝐵 ( Inv ‘ 𝐶 ) 𝐴 ) ‘ 𝐾 ) ) ) → ( ( 𝐹 ( 〈 𝐵 , 𝐴 〉 ⚬ 𝐷 ) 𝐾 ) ( 〈 𝐴 , 𝐵 〉 ⚬ 𝐷 ) ( ( 𝐵 ( Inv ‘ 𝐶 ) 𝐴 ) ‘ 𝐾 ) ) = ( 𝐺 ( 〈 𝐴 , 𝐵 〉 ⚬ 𝐷 ) ( ( 𝐵 ( Inv ‘ 𝐶 ) 𝐴 ) ‘ 𝐾 ) ) ) | |
| 9 | 8 | eqcomd | ⊢ ( ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ∧ ( 𝐾 ∈ ( 𝐵 𝐼 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 𝐻 𝐷 ) ∧ 𝐺 ∈ ( 𝐵 𝐻 𝐷 ) ) ∧ ( ( 𝐹 ( 〈 𝐵 , 𝐴 〉 ⚬ 𝐷 ) 𝐾 ) ( 〈 𝐴 , 𝐵 〉 ⚬ 𝐷 ) ( ( 𝐵 ( Inv ‘ 𝐶 ) 𝐴 ) ‘ 𝐾 ) ) = ( 𝐺 ( 〈 𝐴 , 𝐵 〉 ⚬ 𝐷 ) ( ( 𝐵 ( Inv ‘ 𝐶 ) 𝐴 ) ‘ 𝐾 ) ) ) → ( 𝐺 ( 〈 𝐴 , 𝐵 〉 ⚬ 𝐷 ) ( ( 𝐵 ( Inv ‘ 𝐶 ) 𝐴 ) ‘ 𝐾 ) ) = ( ( 𝐹 ( 〈 𝐵 , 𝐴 〉 ⚬ 𝐷 ) 𝐾 ) ( 〈 𝐴 , 𝐵 〉 ⚬ 𝐷 ) ( ( 𝐵 ( Inv ‘ 𝐶 ) 𝐴 ) ‘ 𝐾 ) ) ) |
| 10 | eqid | ⊢ ( Inv ‘ 𝐶 ) = ( Inv ‘ 𝐶 ) | |
| 11 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → 𝐶 ∈ Cat ) |
| 12 | 11 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ∧ ( 𝐾 ∈ ( 𝐵 𝐼 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 𝐻 𝐷 ) ∧ 𝐺 ∈ ( 𝐵 𝐻 𝐷 ) ) ) → 𝐶 ∈ Cat ) |
| 13 | simpr1 | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → 𝐴 ∈ 𝑋 ) | |
| 14 | 13 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ∧ ( 𝐾 ∈ ( 𝐵 𝐼 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 𝐻 𝐷 ) ∧ 𝐺 ∈ ( 𝐵 𝐻 𝐷 ) ) ) → 𝐴 ∈ 𝑋 ) |
| 15 | simpr2 | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → 𝐵 ∈ 𝑋 ) | |
| 16 | 15 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ∧ ( 𝐾 ∈ ( 𝐵 𝐼 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 𝐻 𝐷 ) ∧ 𝐺 ∈ ( 𝐵 𝐻 𝐷 ) ) ) → 𝐵 ∈ 𝑋 ) |
| 17 | simplr3 | ⊢ ( ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ∧ ( 𝐾 ∈ ( 𝐵 𝐼 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 𝐻 𝐷 ) ∧ 𝐺 ∈ ( 𝐵 𝐻 𝐷 ) ) ) → 𝐷 ∈ 𝑋 ) | |
| 18 | 5 | oveqi | ⊢ ( 𝐵 𝐼 𝐴 ) = ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) |
| 19 | 18 | eleq2i | ⊢ ( 𝐾 ∈ ( 𝐵 𝐼 𝐴 ) ↔ 𝐾 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) |
| 20 | 19 | biimpi | ⊢ ( 𝐾 ∈ ( 𝐵 𝐼 𝐴 ) → 𝐾 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) |
| 21 | 20 | 3ad2ant1 | ⊢ ( ( 𝐾 ∈ ( 𝐵 𝐼 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 𝐻 𝐷 ) ∧ 𝐺 ∈ ( 𝐵 𝐻 𝐷 ) ) → 𝐾 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) |
| 22 | 21 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ∧ ( 𝐾 ∈ ( 𝐵 𝐼 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 𝐻 𝐷 ) ∧ 𝐺 ∈ ( 𝐵 𝐻 𝐷 ) ) ) → 𝐾 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) |
| 23 | 4 | oveqi | ⊢ ( 𝐵 𝐻 𝐷 ) = ( 𝐵 ( Hom ‘ 𝐶 ) 𝐷 ) |
| 24 | 23 | eleq2i | ⊢ ( 𝐺 ∈ ( 𝐵 𝐻 𝐷 ) ↔ 𝐺 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐷 ) ) |
| 25 | 24 | biimpi | ⊢ ( 𝐺 ∈ ( 𝐵 𝐻 𝐷 ) → 𝐺 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐷 ) ) |
| 26 | 25 | 3ad2ant3 | ⊢ ( ( 𝐾 ∈ ( 𝐵 𝐼 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 𝐻 𝐷 ) ∧ 𝐺 ∈ ( 𝐵 𝐻 𝐷 ) ) → 𝐺 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐷 ) ) |
| 27 | 26 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ∧ ( 𝐾 ∈ ( 𝐵 𝐼 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 𝐻 𝐷 ) ∧ 𝐺 ∈ ( 𝐵 𝐻 𝐷 ) ) ) → 𝐺 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐷 ) ) |
| 28 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 29 | 3 28 5 11 15 13 | isohom | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → ( 𝐵 𝐼 𝐴 ) ⊆ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ) |
| 30 | 29 | sseld | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → ( 𝐾 ∈ ( 𝐵 𝐼 𝐴 ) → 𝐾 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ) ) |
| 31 | 30 | com12 | ⊢ ( 𝐾 ∈ ( 𝐵 𝐼 𝐴 ) → ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → 𝐾 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ) ) |
| 32 | 31 | 3ad2ant1 | ⊢ ( ( 𝐾 ∈ ( 𝐵 𝐼 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 𝐻 𝐷 ) ∧ 𝐺 ∈ ( 𝐵 𝐻 𝐷 ) ) → ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → 𝐾 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ) ) |
| 33 | 32 | impcom | ⊢ ( ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ∧ ( 𝐾 ∈ ( 𝐵 𝐼 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 𝐻 𝐷 ) ∧ 𝐺 ∈ ( 𝐵 𝐻 𝐷 ) ) ) → 𝐾 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ) |
| 34 | 4 | oveqi | ⊢ ( 𝐴 𝐻 𝐷 ) = ( 𝐴 ( Hom ‘ 𝐶 ) 𝐷 ) |
| 35 | 34 | eleq2i | ⊢ ( 𝐹 ∈ ( 𝐴 𝐻 𝐷 ) ↔ 𝐹 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐷 ) ) |
| 36 | 35 | biimpi | ⊢ ( 𝐹 ∈ ( 𝐴 𝐻 𝐷 ) → 𝐹 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐷 ) ) |
| 37 | 36 | 3ad2ant2 | ⊢ ( ( 𝐾 ∈ ( 𝐵 𝐼 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 𝐻 𝐷 ) ∧ 𝐺 ∈ ( 𝐵 𝐻 𝐷 ) ) → 𝐹 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐷 ) ) |
| 38 | 37 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ∧ ( 𝐾 ∈ ( 𝐵 𝐼 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 𝐻 𝐷 ) ∧ 𝐺 ∈ ( 𝐵 𝐻 𝐷 ) ) ) → 𝐹 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐷 ) ) |
| 39 | 3 28 6 12 16 14 17 33 38 | catcocl | ⊢ ( ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ∧ ( 𝐾 ∈ ( 𝐵 𝐼 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 𝐻 𝐷 ) ∧ 𝐺 ∈ ( 𝐵 𝐻 𝐷 ) ) ) → ( 𝐹 ( 〈 𝐵 , 𝐴 〉 ⚬ 𝐷 ) 𝐾 ) ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐷 ) ) |
| 40 | eqid | ⊢ ( ( 𝐵 ( Inv ‘ 𝐶 ) 𝐴 ) ‘ 𝐾 ) = ( ( 𝐵 ( Inv ‘ 𝐶 ) 𝐴 ) ‘ 𝐾 ) | |
| 41 | 6 | oveqi | ⊢ ( 〈 𝐴 , 𝐵 〉 ⚬ 𝐷 ) = ( 〈 𝐴 , 𝐵 〉 ( comp ‘ 𝐶 ) 𝐷 ) |
| 42 | 3 10 12 14 16 17 22 27 39 40 41 | rcaninv | ⊢ ( ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ∧ ( 𝐾 ∈ ( 𝐵 𝐼 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 𝐻 𝐷 ) ∧ 𝐺 ∈ ( 𝐵 𝐻 𝐷 ) ) ) → ( ( 𝐺 ( 〈 𝐴 , 𝐵 〉 ⚬ 𝐷 ) ( ( 𝐵 ( Inv ‘ 𝐶 ) 𝐴 ) ‘ 𝐾 ) ) = ( ( 𝐹 ( 〈 𝐵 , 𝐴 〉 ⚬ 𝐷 ) 𝐾 ) ( 〈 𝐴 , 𝐵 〉 ⚬ 𝐷 ) ( ( 𝐵 ( Inv ‘ 𝐶 ) 𝐴 ) ‘ 𝐾 ) ) → 𝐺 = ( 𝐹 ( 〈 𝐵 , 𝐴 〉 ⚬ 𝐷 ) 𝐾 ) ) ) |
| 43 | 7 9 42 | sylc | ⊢ ( ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ∧ ( 𝐾 ∈ ( 𝐵 𝐼 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 𝐻 𝐷 ) ∧ 𝐺 ∈ ( 𝐵 𝐻 𝐷 ) ) ∧ ( ( 𝐹 ( 〈 𝐵 , 𝐴 〉 ⚬ 𝐷 ) 𝐾 ) ( 〈 𝐴 , 𝐵 〉 ⚬ 𝐷 ) ( ( 𝐵 ( Inv ‘ 𝐶 ) 𝐴 ) ‘ 𝐾 ) ) = ( 𝐺 ( 〈 𝐴 , 𝐵 〉 ⚬ 𝐷 ) ( ( 𝐵 ( Inv ‘ 𝐶 ) 𝐴 ) ‘ 𝐾 ) ) ) → 𝐺 = ( 𝐹 ( 〈 𝐵 , 𝐴 〉 ⚬ 𝐷 ) 𝐾 ) ) |