This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 0 for initoeu2 . (Contributed by AV, 9-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | initoeu1.c | |- ( ph -> C e. Cat ) |
|
| initoeu1.a | |- ( ph -> A e. ( InitO ` C ) ) |
||
| initoeu2lem.x | |- X = ( Base ` C ) |
||
| initoeu2lem.h | |- H = ( Hom ` C ) |
||
| initoeu2lem.i | |- I = ( Iso ` C ) |
||
| initoeu2lem.o | |- .o. = ( comp ` C ) |
||
| Assertion | initoeu2lem0 | |- ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) /\ ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) ) -> G = ( F ( <. B , A >. .o. D ) K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | initoeu1.c | |- ( ph -> C e. Cat ) |
|
| 2 | initoeu1.a | |- ( ph -> A e. ( InitO ` C ) ) |
|
| 3 | initoeu2lem.x | |- X = ( Base ` C ) |
|
| 4 | initoeu2lem.h | |- H = ( Hom ` C ) |
|
| 5 | initoeu2lem.i | |- I = ( Iso ` C ) |
|
| 6 | initoeu2lem.o | |- .o. = ( comp ` C ) |
|
| 7 | 3simpa | |- ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) /\ ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) ) -> ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) ) ) |
|
| 8 | simp3 | |- ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) /\ ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) ) -> ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) ) |
|
| 9 | 8 | eqcomd | |- ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) /\ ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) ) -> ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) ) |
| 10 | eqid | |- ( Inv ` C ) = ( Inv ` C ) |
|
| 11 | 1 | adantr | |- ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) -> C e. Cat ) |
| 12 | 11 | adantr | |- ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) ) -> C e. Cat ) |
| 13 | simpr1 | |- ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) -> A e. X ) |
|
| 14 | 13 | adantr | |- ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) ) -> A e. X ) |
| 15 | simpr2 | |- ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) -> B e. X ) |
|
| 16 | 15 | adantr | |- ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) ) -> B e. X ) |
| 17 | simplr3 | |- ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) ) -> D e. X ) |
|
| 18 | 5 | oveqi | |- ( B I A ) = ( B ( Iso ` C ) A ) |
| 19 | 18 | eleq2i | |- ( K e. ( B I A ) <-> K e. ( B ( Iso ` C ) A ) ) |
| 20 | 19 | biimpi | |- ( K e. ( B I A ) -> K e. ( B ( Iso ` C ) A ) ) |
| 21 | 20 | 3ad2ant1 | |- ( ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) -> K e. ( B ( Iso ` C ) A ) ) |
| 22 | 21 | adantl | |- ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) ) -> K e. ( B ( Iso ` C ) A ) ) |
| 23 | 4 | oveqi | |- ( B H D ) = ( B ( Hom ` C ) D ) |
| 24 | 23 | eleq2i | |- ( G e. ( B H D ) <-> G e. ( B ( Hom ` C ) D ) ) |
| 25 | 24 | biimpi | |- ( G e. ( B H D ) -> G e. ( B ( Hom ` C ) D ) ) |
| 26 | 25 | 3ad2ant3 | |- ( ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) -> G e. ( B ( Hom ` C ) D ) ) |
| 27 | 26 | adantl | |- ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) ) -> G e. ( B ( Hom ` C ) D ) ) |
| 28 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 29 | 3 28 5 11 15 13 | isohom | |- ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) -> ( B I A ) C_ ( B ( Hom ` C ) A ) ) |
| 30 | 29 | sseld | |- ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) -> ( K e. ( B I A ) -> K e. ( B ( Hom ` C ) A ) ) ) |
| 31 | 30 | com12 | |- ( K e. ( B I A ) -> ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) -> K e. ( B ( Hom ` C ) A ) ) ) |
| 32 | 31 | 3ad2ant1 | |- ( ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) -> ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) -> K e. ( B ( Hom ` C ) A ) ) ) |
| 33 | 32 | impcom | |- ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) ) -> K e. ( B ( Hom ` C ) A ) ) |
| 34 | 4 | oveqi | |- ( A H D ) = ( A ( Hom ` C ) D ) |
| 35 | 34 | eleq2i | |- ( F e. ( A H D ) <-> F e. ( A ( Hom ` C ) D ) ) |
| 36 | 35 | biimpi | |- ( F e. ( A H D ) -> F e. ( A ( Hom ` C ) D ) ) |
| 37 | 36 | 3ad2ant2 | |- ( ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) -> F e. ( A ( Hom ` C ) D ) ) |
| 38 | 37 | adantl | |- ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) ) -> F e. ( A ( Hom ` C ) D ) ) |
| 39 | 3 28 6 12 16 14 17 33 38 | catcocl | |- ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) ) -> ( F ( <. B , A >. .o. D ) K ) e. ( B ( Hom ` C ) D ) ) |
| 40 | eqid | |- ( ( B ( Inv ` C ) A ) ` K ) = ( ( B ( Inv ` C ) A ) ` K ) |
|
| 41 | 6 | oveqi | |- ( <. A , B >. .o. D ) = ( <. A , B >. ( comp ` C ) D ) |
| 42 | 3 10 12 14 16 17 22 27 39 40 41 | rcaninv | |- ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) ) -> ( ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) -> G = ( F ( <. B , A >. .o. D ) K ) ) ) |
| 43 | 7 9 42 | sylc | |- ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) /\ ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) ) -> G = ( F ( <. B , A >. .o. D ) K ) ) |