This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Shorter proof of infn0 using ax-un . (Contributed by NM, 23-Oct-2004) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infn0ALT | ⊢ ( ω ≼ 𝐴 → 𝐴 ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano1 | ⊢ ∅ ∈ ω | |
| 2 | infsdomnn | ⊢ ( ( ω ≼ 𝐴 ∧ ∅ ∈ ω ) → ∅ ≺ 𝐴 ) | |
| 3 | 1 2 | mpan2 | ⊢ ( ω ≼ 𝐴 → ∅ ≺ 𝐴 ) |
| 4 | reldom | ⊢ Rel ≼ | |
| 5 | 4 | brrelex2i | ⊢ ( ω ≼ 𝐴 → 𝐴 ∈ V ) |
| 6 | 0sdomg | ⊢ ( 𝐴 ∈ V → ( ∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅ ) ) | |
| 7 | 5 6 | syl | ⊢ ( ω ≼ 𝐴 → ( ∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
| 8 | 3 7 | mpbid | ⊢ ( ω ≼ 𝐴 → 𝐴 ≠ ∅ ) |