This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An infimum is a lower bound. See also infcl and infglb . (Contributed by AV, 3-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | infcl.1 | |- ( ph -> R Or A ) |
|
| infcl.2 | |- ( ph -> E. x e. A ( A. y e. B -. y R x /\ A. y e. A ( x R y -> E. z e. B z R y ) ) ) |
||
| Assertion | inflb | |- ( ph -> ( C e. B -> -. C R inf ( B , A , R ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infcl.1 | |- ( ph -> R Or A ) |
|
| 2 | infcl.2 | |- ( ph -> E. x e. A ( A. y e. B -. y R x /\ A. y e. A ( x R y -> E. z e. B z R y ) ) ) |
|
| 3 | cnvso | |- ( R Or A <-> `' R Or A ) |
|
| 4 | 1 3 | sylib | |- ( ph -> `' R Or A ) |
| 5 | 1 2 | infcllem | |- ( ph -> E. x e. A ( A. y e. B -. x `' R y /\ A. y e. A ( y `' R x -> E. z e. B y `' R z ) ) ) |
| 6 | 4 5 | supub | |- ( ph -> ( C e. B -> -. sup ( B , A , `' R ) `' R C ) ) |
| 7 | 6 | imp | |- ( ( ph /\ C e. B ) -> -. sup ( B , A , `' R ) `' R C ) |
| 8 | df-inf | |- inf ( B , A , R ) = sup ( B , A , `' R ) |
|
| 9 | 8 | a1i | |- ( ( ph /\ C e. B ) -> inf ( B , A , R ) = sup ( B , A , `' R ) ) |
| 10 | 9 | breq2d | |- ( ( ph /\ C e. B ) -> ( C R inf ( B , A , R ) <-> C R sup ( B , A , `' R ) ) ) |
| 11 | 4 5 | supcl | |- ( ph -> sup ( B , A , `' R ) e. A ) |
| 12 | brcnvg | |- ( ( sup ( B , A , `' R ) e. A /\ C e. B ) -> ( sup ( B , A , `' R ) `' R C <-> C R sup ( B , A , `' R ) ) ) |
|
| 13 | 12 | bicomd | |- ( ( sup ( B , A , `' R ) e. A /\ C e. B ) -> ( C R sup ( B , A , `' R ) <-> sup ( B , A , `' R ) `' R C ) ) |
| 14 | 11 13 | sylan | |- ( ( ph /\ C e. B ) -> ( C R sup ( B , A , `' R ) <-> sup ( B , A , `' R ) `' R C ) ) |
| 15 | 10 14 | bitrd | |- ( ( ph /\ C e. B ) -> ( C R inf ( B , A , R ) <-> sup ( B , A , `' R ) `' R C ) ) |
| 16 | 7 15 | mtbird | |- ( ( ph /\ C e. B ) -> -. C R inf ( B , A , R ) ) |
| 17 | 16 | ex | |- ( ph -> ( C e. B -> -. C R inf ( B , A , R ) ) ) |