This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Image of an infimum under an isomorphism. (Contributed by AV, 4-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | infiso.1 | ⊢ ( 𝜑 → 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) | |
| infiso.2 | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) | ||
| infiso.3 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐶 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐶 𝑧 𝑅 𝑦 ) ) ) | ||
| infiso.4 | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | ||
| Assertion | infiso | ⊢ ( 𝜑 → inf ( ( 𝐹 “ 𝐶 ) , 𝐵 , 𝑆 ) = ( 𝐹 ‘ inf ( 𝐶 , 𝐴 , 𝑅 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infiso.1 | ⊢ ( 𝜑 → 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) | |
| 2 | infiso.2 | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) | |
| 3 | infiso.3 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐶 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐶 𝑧 𝑅 𝑦 ) ) ) | |
| 4 | infiso.4 | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | |
| 5 | isocnv2 | ⊢ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ 𝐹 Isom ◡ 𝑅 , ◡ 𝑆 ( 𝐴 , 𝐵 ) ) | |
| 6 | 1 5 | sylib | ⊢ ( 𝜑 → 𝐹 Isom ◡ 𝑅 , ◡ 𝑆 ( 𝐴 , 𝐵 ) ) |
| 7 | 4 3 | infcllem | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐶 ¬ 𝑥 ◡ 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 ◡ 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐶 𝑦 ◡ 𝑅 𝑧 ) ) ) |
| 8 | cnvso | ⊢ ( 𝑅 Or 𝐴 ↔ ◡ 𝑅 Or 𝐴 ) | |
| 9 | 4 8 | sylib | ⊢ ( 𝜑 → ◡ 𝑅 Or 𝐴 ) |
| 10 | 6 2 7 9 | supiso | ⊢ ( 𝜑 → sup ( ( 𝐹 “ 𝐶 ) , 𝐵 , ◡ 𝑆 ) = ( 𝐹 ‘ sup ( 𝐶 , 𝐴 , ◡ 𝑅 ) ) ) |
| 11 | df-inf | ⊢ inf ( ( 𝐹 “ 𝐶 ) , 𝐵 , 𝑆 ) = sup ( ( 𝐹 “ 𝐶 ) , 𝐵 , ◡ 𝑆 ) | |
| 12 | df-inf | ⊢ inf ( 𝐶 , 𝐴 , 𝑅 ) = sup ( 𝐶 , 𝐴 , ◡ 𝑅 ) | |
| 13 | 12 | fveq2i | ⊢ ( 𝐹 ‘ inf ( 𝐶 , 𝐴 , 𝑅 ) ) = ( 𝐹 ‘ sup ( 𝐶 , 𝐴 , ◡ 𝑅 ) ) |
| 14 | 10 11 13 | 3eqtr4g | ⊢ ( 𝜑 → inf ( ( 𝐹 “ 𝐶 ) , 𝐵 , 𝑆 ) = ( 𝐹 ‘ inf ( 𝐶 , 𝐴 , 𝑅 ) ) ) |