This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Image of an infimum under an isomorphism. (Contributed by AV, 4-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | infiso.1 | |- ( ph -> F Isom R , S ( A , B ) ) |
|
| infiso.2 | |- ( ph -> C C_ A ) |
||
| infiso.3 | |- ( ph -> E. x e. A ( A. y e. C -. y R x /\ A. y e. A ( x R y -> E. z e. C z R y ) ) ) |
||
| infiso.4 | |- ( ph -> R Or A ) |
||
| Assertion | infiso | |- ( ph -> inf ( ( F " C ) , B , S ) = ( F ` inf ( C , A , R ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infiso.1 | |- ( ph -> F Isom R , S ( A , B ) ) |
|
| 2 | infiso.2 | |- ( ph -> C C_ A ) |
|
| 3 | infiso.3 | |- ( ph -> E. x e. A ( A. y e. C -. y R x /\ A. y e. A ( x R y -> E. z e. C z R y ) ) ) |
|
| 4 | infiso.4 | |- ( ph -> R Or A ) |
|
| 5 | isocnv2 | |- ( F Isom R , S ( A , B ) <-> F Isom `' R , `' S ( A , B ) ) |
|
| 6 | 1 5 | sylib | |- ( ph -> F Isom `' R , `' S ( A , B ) ) |
| 7 | 4 3 | infcllem | |- ( ph -> E. x e. A ( A. y e. C -. x `' R y /\ A. y e. A ( y `' R x -> E. z e. C y `' R z ) ) ) |
| 8 | cnvso | |- ( R Or A <-> `' R Or A ) |
|
| 9 | 4 8 | sylib | |- ( ph -> `' R Or A ) |
| 10 | 6 2 7 9 | supiso | |- ( ph -> sup ( ( F " C ) , B , `' S ) = ( F ` sup ( C , A , `' R ) ) ) |
| 11 | df-inf | |- inf ( ( F " C ) , B , S ) = sup ( ( F " C ) , B , `' S ) |
|
| 12 | df-inf | |- inf ( C , A , R ) = sup ( C , A , `' R ) |
|
| 13 | 12 | fveq2i | |- ( F ` inf ( C , A , R ) ) = ( F ` sup ( C , A , `' R ) ) |
| 14 | 10 11 13 | 3eqtr4g | |- ( ph -> inf ( ( F " C ) , B , S ) = ( F ` inf ( C , A , R ) ) ) |