This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The infimum of an empty set under a base set which has a unique greatest element is the greatest element of the base set. (Contributed by AV, 4-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infempty | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑋 𝑅 𝑦 ) ∧ ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ) → inf ( ∅ , 𝐴 , 𝑅 ) = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inf | ⊢ inf ( ∅ , 𝐴 , 𝑅 ) = sup ( ∅ , 𝐴 , ◡ 𝑅 ) | |
| 2 | cnvso | ⊢ ( 𝑅 Or 𝐴 ↔ ◡ 𝑅 Or 𝐴 ) | |
| 3 | brcnvg | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑦 ◡ 𝑅 𝑋 ↔ 𝑋 𝑅 𝑦 ) ) | |
| 4 | 3 | ancoms | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 ◡ 𝑅 𝑋 ↔ 𝑋 𝑅 𝑦 ) ) |
| 5 | 4 | bicomd | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑋 𝑅 𝑦 ↔ 𝑦 ◡ 𝑅 𝑋 ) ) |
| 6 | 5 | notbid | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ¬ 𝑋 𝑅 𝑦 ↔ ¬ 𝑦 ◡ 𝑅 𝑋 ) ) |
| 7 | 6 | ralbidva | ⊢ ( 𝑋 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑋 𝑅 𝑦 ↔ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 ◡ 𝑅 𝑋 ) ) |
| 8 | 7 | pm5.32i | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑋 𝑅 𝑦 ) ↔ ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 ◡ 𝑅 𝑋 ) ) |
| 9 | brcnvg | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ◡ 𝑅 𝑥 ↔ 𝑥 𝑅 𝑦 ) ) | |
| 10 | 9 | ancoms | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 ◡ 𝑅 𝑥 ↔ 𝑥 𝑅 𝑦 ) ) |
| 11 | 10 | bicomd | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 𝑅 𝑦 ↔ 𝑦 ◡ 𝑅 𝑥 ) ) |
| 12 | 11 | notbid | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ¬ 𝑥 𝑅 𝑦 ↔ ¬ 𝑦 ◡ 𝑅 𝑥 ) ) |
| 13 | 12 | ralbidva | ⊢ ( 𝑥 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ↔ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 ◡ 𝑅 𝑥 ) ) |
| 14 | 13 | reubiia | ⊢ ( ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ↔ ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 ◡ 𝑅 𝑥 ) |
| 15 | sup0 | ⊢ ( ( ◡ 𝑅 Or 𝐴 ∧ ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 ◡ 𝑅 𝑋 ) ∧ ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 ◡ 𝑅 𝑥 ) → sup ( ∅ , 𝐴 , ◡ 𝑅 ) = 𝑋 ) | |
| 16 | 2 8 14 15 | syl3anb | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑋 𝑅 𝑦 ) ∧ ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ) → sup ( ∅ , 𝐴 , ◡ 𝑅 ) = 𝑋 ) |
| 17 | 1 16 | eqtrid | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑋 𝑅 𝑦 ) ∧ ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ) → inf ( ∅ , 𝐴 , 𝑅 ) = 𝑋 ) |