This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum of an empty set under a base set which has a unique smallest element is the smallest element of the base set. (Contributed by AV, 4-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sup0 | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑋 ) ∧ ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) → sup ( ∅ , 𝐴 , 𝑅 ) = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sup0riota | ⊢ ( 𝑅 Or 𝐴 → sup ( ∅ , 𝐴 , 𝑅 ) = ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) ) | |
| 2 | 1 | 3ad2ant1 | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑋 ) ∧ ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) → sup ( ∅ , 𝐴 , 𝑅 ) = ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) ) |
| 3 | simp2r | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑋 ) ∧ ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) → ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑋 ) | |
| 4 | simpl | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑋 ) → 𝑋 ∈ 𝐴 ) | |
| 5 | 4 | anim1i | ⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑋 ) ∧ ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) → ( 𝑋 ∈ 𝐴 ∧ ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) ) |
| 6 | 5 | 3adant1 | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑋 ) ∧ ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) → ( 𝑋 ∈ 𝐴 ∧ ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) ) |
| 7 | breq2 | ⊢ ( 𝑥 = 𝑋 → ( 𝑦 𝑅 𝑥 ↔ 𝑦 𝑅 𝑋 ) ) | |
| 8 | 7 | notbid | ⊢ ( 𝑥 = 𝑋 → ( ¬ 𝑦 𝑅 𝑥 ↔ ¬ 𝑦 𝑅 𝑋 ) ) |
| 9 | 8 | ralbidv | ⊢ ( 𝑥 = 𝑋 → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ↔ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑋 ) ) |
| 10 | 9 | riota2 | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑋 ↔ ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) = 𝑋 ) ) |
| 11 | 6 10 | syl | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑋 ) ∧ ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑋 ↔ ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) = 𝑋 ) ) |
| 12 | 3 11 | mpbid | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑋 ) ∧ ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) → ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) = 𝑋 ) |
| 13 | 2 12 | eqtrd | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑋 ) ∧ ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) → sup ( ∅ , 𝐴 , 𝑅 ) = 𝑋 ) |