This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Strong Mathematical Induction for positive integers (inference schema). The first two hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 21-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | indstr2.1 | ⊢ ( 𝑥 = 1 → ( 𝜑 ↔ 𝜒 ) ) | |
| indstr2.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | ||
| indstr2.3 | ⊢ 𝜒 | ||
| indstr2.4 | ⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) → ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → 𝜓 ) → 𝜑 ) ) | ||
| Assertion | indstr2 | ⊢ ( 𝑥 ∈ ℕ → 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indstr2.1 | ⊢ ( 𝑥 = 1 → ( 𝜑 ↔ 𝜒 ) ) | |
| 2 | indstr2.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | indstr2.3 | ⊢ 𝜒 | |
| 4 | indstr2.4 | ⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) → ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → 𝜓 ) → 𝜑 ) ) | |
| 5 | elnn1uz2 | ⊢ ( 𝑥 ∈ ℕ ↔ ( 𝑥 = 1 ∨ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) ) | |
| 6 | nnnlt1 | ⊢ ( 𝑦 ∈ ℕ → ¬ 𝑦 < 1 ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝑥 = 1 ∧ 𝑦 ∈ ℕ ) → ¬ 𝑦 < 1 ) |
| 8 | breq2 | ⊢ ( 𝑥 = 1 → ( 𝑦 < 𝑥 ↔ 𝑦 < 1 ) ) | |
| 9 | 8 | adantr | ⊢ ( ( 𝑥 = 1 ∧ 𝑦 ∈ ℕ ) → ( 𝑦 < 𝑥 ↔ 𝑦 < 1 ) ) |
| 10 | 7 9 | mtbird | ⊢ ( ( 𝑥 = 1 ∧ 𝑦 ∈ ℕ ) → ¬ 𝑦 < 𝑥 ) |
| 11 | 10 | pm2.21d | ⊢ ( ( 𝑥 = 1 ∧ 𝑦 ∈ ℕ ) → ( 𝑦 < 𝑥 → 𝜓 ) ) |
| 12 | 11 | ralrimiva | ⊢ ( 𝑥 = 1 → ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → 𝜓 ) ) |
| 13 | pm5.5 | ⊢ ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → 𝜓 ) → ( ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → 𝜓 ) → 𝜑 ) ↔ 𝜑 ) ) | |
| 14 | 12 13 | syl | ⊢ ( 𝑥 = 1 → ( ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → 𝜓 ) → 𝜑 ) ↔ 𝜑 ) ) |
| 15 | 14 1 | bitrd | ⊢ ( 𝑥 = 1 → ( ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → 𝜓 ) → 𝜑 ) ↔ 𝜒 ) ) |
| 16 | 3 15 | mpbiri | ⊢ ( 𝑥 = 1 → ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → 𝜓 ) → 𝜑 ) ) |
| 17 | 16 4 | jaoi | ⊢ ( ( 𝑥 = 1 ∨ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) → ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → 𝜓 ) → 𝜑 ) ) |
| 18 | 5 17 | sylbi | ⊢ ( 𝑥 ∈ ℕ → ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → 𝜓 ) → 𝜑 ) ) |
| 19 | 2 18 | indstr | ⊢ ( 𝑥 ∈ ℕ → 𝜑 ) |