This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extract the lower bound of an upper set of integers as its infimum. (Contributed by NM, 7-Oct-2005) (Revised by AV, 4-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | uzinfi.1 | ⊢ 𝑀 ∈ ℤ | |
| Assertion | uzinfi | ⊢ inf ( ( ℤ≥ ‘ 𝑀 ) , ℝ , < ) = 𝑀 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzinfi.1 | ⊢ 𝑀 ∈ ℤ | |
| 2 | ltso | ⊢ < Or ℝ | |
| 3 | 2 | a1i | ⊢ ( 𝑀 ∈ ℤ → < Or ℝ ) |
| 4 | zre | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) | |
| 5 | uzid | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 6 | eluz2 | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ) ) | |
| 7 | 4 | adantr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → 𝑀 ∈ ℝ ) |
| 8 | zre | ⊢ ( 𝑘 ∈ ℤ → 𝑘 ∈ ℝ ) | |
| 9 | 8 | adantl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → 𝑘 ∈ ℝ ) |
| 10 | 7 9 | lenltd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( 𝑀 ≤ 𝑘 ↔ ¬ 𝑘 < 𝑀 ) ) |
| 11 | 10 | biimp3a | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ) → ¬ 𝑘 < 𝑀 ) |
| 12 | 11 | a1d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ) → ( 𝑀 ∈ ℤ → ¬ 𝑘 < 𝑀 ) ) |
| 13 | 6 12 | sylbi | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ∈ ℤ → ¬ 𝑘 < 𝑀 ) ) |
| 14 | 13 | impcom | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ¬ 𝑘 < 𝑀 ) |
| 15 | 3 4 5 14 | infmin | ⊢ ( 𝑀 ∈ ℤ → inf ( ( ℤ≥ ‘ 𝑀 ) , ℝ , < ) = 𝑀 ) |
| 16 | 1 15 | ax-mp | ⊢ inf ( ( ℤ≥ ‘ 𝑀 ) , ℝ , < ) = 𝑀 |