This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Strong Mathematical Induction for positive integers (inference schema). The first two hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 21-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | indstr2.1 | |- ( x = 1 -> ( ph <-> ch ) ) |
|
| indstr2.2 | |- ( x = y -> ( ph <-> ps ) ) |
||
| indstr2.3 | |- ch |
||
| indstr2.4 | |- ( x e. ( ZZ>= ` 2 ) -> ( A. y e. NN ( y < x -> ps ) -> ph ) ) |
||
| Assertion | indstr2 | |- ( x e. NN -> ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indstr2.1 | |- ( x = 1 -> ( ph <-> ch ) ) |
|
| 2 | indstr2.2 | |- ( x = y -> ( ph <-> ps ) ) |
|
| 3 | indstr2.3 | |- ch |
|
| 4 | indstr2.4 | |- ( x e. ( ZZ>= ` 2 ) -> ( A. y e. NN ( y < x -> ps ) -> ph ) ) |
|
| 5 | elnn1uz2 | |- ( x e. NN <-> ( x = 1 \/ x e. ( ZZ>= ` 2 ) ) ) |
|
| 6 | nnnlt1 | |- ( y e. NN -> -. y < 1 ) |
|
| 7 | 6 | adantl | |- ( ( x = 1 /\ y e. NN ) -> -. y < 1 ) |
| 8 | breq2 | |- ( x = 1 -> ( y < x <-> y < 1 ) ) |
|
| 9 | 8 | adantr | |- ( ( x = 1 /\ y e. NN ) -> ( y < x <-> y < 1 ) ) |
| 10 | 7 9 | mtbird | |- ( ( x = 1 /\ y e. NN ) -> -. y < x ) |
| 11 | 10 | pm2.21d | |- ( ( x = 1 /\ y e. NN ) -> ( y < x -> ps ) ) |
| 12 | 11 | ralrimiva | |- ( x = 1 -> A. y e. NN ( y < x -> ps ) ) |
| 13 | pm5.5 | |- ( A. y e. NN ( y < x -> ps ) -> ( ( A. y e. NN ( y < x -> ps ) -> ph ) <-> ph ) ) |
|
| 14 | 12 13 | syl | |- ( x = 1 -> ( ( A. y e. NN ( y < x -> ps ) -> ph ) <-> ph ) ) |
| 15 | 14 1 | bitrd | |- ( x = 1 -> ( ( A. y e. NN ( y < x -> ps ) -> ph ) <-> ch ) ) |
| 16 | 3 15 | mpbiri | |- ( x = 1 -> ( A. y e. NN ( y < x -> ps ) -> ph ) ) |
| 17 | 16 4 | jaoi | |- ( ( x = 1 \/ x e. ( ZZ>= ` 2 ) ) -> ( A. y e. NN ( y < x -> ps ) -> ph ) ) |
| 18 | 5 17 | sylbi | |- ( x e. NN -> ( A. y e. NN ( y < x -> ps ) -> ph ) ) |
| 19 | 2 18 | indstr | |- ( x e. NN -> ph ) |