This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of two closed sets is closed. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | incld | |- ( ( A e. ( Clsd ` J ) /\ B e. ( Clsd ` J ) ) -> ( A i^i B ) e. ( Clsd ` J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intprg | |- ( ( A e. ( Clsd ` J ) /\ B e. ( Clsd ` J ) ) -> |^| { A , B } = ( A i^i B ) ) |
|
| 2 | prnzg | |- ( A e. ( Clsd ` J ) -> { A , B } =/= (/) ) |
|
| 3 | prssi | |- ( ( A e. ( Clsd ` J ) /\ B e. ( Clsd ` J ) ) -> { A , B } C_ ( Clsd ` J ) ) |
|
| 4 | intcld | |- ( ( { A , B } =/= (/) /\ { A , B } C_ ( Clsd ` J ) ) -> |^| { A , B } e. ( Clsd ` J ) ) |
|
| 5 | 2 3 4 | syl2an2r | |- ( ( A e. ( Clsd ` J ) /\ B e. ( Clsd ` J ) ) -> |^| { A , B } e. ( Clsd ` J ) ) |
| 6 | 1 5 | eqeltrrd | |- ( ( A e. ( Clsd ` J ) /\ B e. ( Clsd ` J ) ) -> ( A i^i B ) e. ( Clsd ` J ) ) |