This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the induced metric on a normed complex vector space. (Contributed by NM, 11-Sep-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ims | ⊢ IndMet = ( 𝑢 ∈ NrmCVec ↦ ( ( normCV ‘ 𝑢 ) ∘ ( −𝑣 ‘ 𝑢 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cims | ⊢ IndMet | |
| 1 | vu | ⊢ 𝑢 | |
| 2 | cnv | ⊢ NrmCVec | |
| 3 | cnmcv | ⊢ normCV | |
| 4 | 1 | cv | ⊢ 𝑢 |
| 5 | 4 3 | cfv | ⊢ ( normCV ‘ 𝑢 ) |
| 6 | cnsb | ⊢ −𝑣 | |
| 7 | 4 6 | cfv | ⊢ ( −𝑣 ‘ 𝑢 ) |
| 8 | 5 7 | ccom | ⊢ ( ( normCV ‘ 𝑢 ) ∘ ( −𝑣 ‘ 𝑢 ) ) |
| 9 | 1 2 8 | cmpt | ⊢ ( 𝑢 ∈ NrmCVec ↦ ( ( normCV ‘ 𝑢 ) ∘ ( −𝑣 ‘ 𝑢 ) ) ) |
| 10 | 0 9 | wceq | ⊢ IndMet = ( 𝑢 ∈ NrmCVec ↦ ( ( normCV ‘ 𝑢 ) ∘ ( −𝑣 ‘ 𝑢 ) ) ) |