This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of a topological space under a function is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imastps.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) | |
| imastps.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | ||
| imastps.f | ⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) | ||
| imastps.r | ⊢ ( 𝜑 → 𝑅 ∈ TopSp ) | ||
| Assertion | imastps | ⊢ ( 𝜑 → 𝑈 ∈ TopSp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imastps.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) | |
| 2 | imastps.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | |
| 3 | imastps.f | ⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) | |
| 4 | imastps.r | ⊢ ( 𝜑 → 𝑅 ∈ TopSp ) | |
| 5 | eqid | ⊢ ( TopOpen ‘ 𝑅 ) = ( TopOpen ‘ 𝑅 ) | |
| 6 | eqid | ⊢ ( TopOpen ‘ 𝑈 ) = ( TopOpen ‘ 𝑈 ) | |
| 7 | 1 2 3 4 5 6 | imastopn | ⊢ ( 𝜑 → ( TopOpen ‘ 𝑈 ) = ( ( TopOpen ‘ 𝑅 ) qTop 𝐹 ) ) |
| 8 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 9 | 8 5 | istps | ⊢ ( 𝑅 ∈ TopSp ↔ ( TopOpen ‘ 𝑅 ) ∈ ( TopOn ‘ ( Base ‘ 𝑅 ) ) ) |
| 10 | 4 9 | sylib | ⊢ ( 𝜑 → ( TopOpen ‘ 𝑅 ) ∈ ( TopOn ‘ ( Base ‘ 𝑅 ) ) ) |
| 11 | 2 | fveq2d | ⊢ ( 𝜑 → ( TopOn ‘ 𝑉 ) = ( TopOn ‘ ( Base ‘ 𝑅 ) ) ) |
| 12 | 10 11 | eleqtrrd | ⊢ ( 𝜑 → ( TopOpen ‘ 𝑅 ) ∈ ( TopOn ‘ 𝑉 ) ) |
| 13 | qtoptopon | ⊢ ( ( ( TopOpen ‘ 𝑅 ) ∈ ( TopOn ‘ 𝑉 ) ∧ 𝐹 : 𝑉 –onto→ 𝐵 ) → ( ( TopOpen ‘ 𝑅 ) qTop 𝐹 ) ∈ ( TopOn ‘ 𝐵 ) ) | |
| 14 | 12 3 13 | syl2anc | ⊢ ( 𝜑 → ( ( TopOpen ‘ 𝑅 ) qTop 𝐹 ) ∈ ( TopOn ‘ 𝐵 ) ) |
| 15 | 1 2 3 4 | imasbas | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑈 ) ) |
| 16 | 15 | fveq2d | ⊢ ( 𝜑 → ( TopOn ‘ 𝐵 ) = ( TopOn ‘ ( Base ‘ 𝑈 ) ) ) |
| 17 | 14 16 | eleqtrd | ⊢ ( 𝜑 → ( ( TopOpen ‘ 𝑅 ) qTop 𝐹 ) ∈ ( TopOn ‘ ( Base ‘ 𝑈 ) ) ) |
| 18 | 7 17 | eqeltrd | ⊢ ( 𝜑 → ( TopOpen ‘ 𝑈 ) ∈ ( TopOn ‘ ( Base ‘ 𝑈 ) ) ) |
| 19 | eqid | ⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) | |
| 20 | 19 6 | istps | ⊢ ( 𝑈 ∈ TopSp ↔ ( TopOpen ‘ 𝑈 ) ∈ ( TopOn ‘ ( Base ‘ 𝑈 ) ) ) |
| 21 | 18 20 | sylibr | ⊢ ( 𝜑 → 𝑈 ∈ TopSp ) |