This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of a topological space under a function is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imastps.u | |- ( ph -> U = ( F "s R ) ) |
|
| imastps.v | |- ( ph -> V = ( Base ` R ) ) |
||
| imastps.f | |- ( ph -> F : V -onto-> B ) |
||
| imastps.r | |- ( ph -> R e. TopSp ) |
||
| Assertion | imastps | |- ( ph -> U e. TopSp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imastps.u | |- ( ph -> U = ( F "s R ) ) |
|
| 2 | imastps.v | |- ( ph -> V = ( Base ` R ) ) |
|
| 3 | imastps.f | |- ( ph -> F : V -onto-> B ) |
|
| 4 | imastps.r | |- ( ph -> R e. TopSp ) |
|
| 5 | eqid | |- ( TopOpen ` R ) = ( TopOpen ` R ) |
|
| 6 | eqid | |- ( TopOpen ` U ) = ( TopOpen ` U ) |
|
| 7 | 1 2 3 4 5 6 | imastopn | |- ( ph -> ( TopOpen ` U ) = ( ( TopOpen ` R ) qTop F ) ) |
| 8 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 9 | 8 5 | istps | |- ( R e. TopSp <-> ( TopOpen ` R ) e. ( TopOn ` ( Base ` R ) ) ) |
| 10 | 4 9 | sylib | |- ( ph -> ( TopOpen ` R ) e. ( TopOn ` ( Base ` R ) ) ) |
| 11 | 2 | fveq2d | |- ( ph -> ( TopOn ` V ) = ( TopOn ` ( Base ` R ) ) ) |
| 12 | 10 11 | eleqtrrd | |- ( ph -> ( TopOpen ` R ) e. ( TopOn ` V ) ) |
| 13 | qtoptopon | |- ( ( ( TopOpen ` R ) e. ( TopOn ` V ) /\ F : V -onto-> B ) -> ( ( TopOpen ` R ) qTop F ) e. ( TopOn ` B ) ) |
|
| 14 | 12 3 13 | syl2anc | |- ( ph -> ( ( TopOpen ` R ) qTop F ) e. ( TopOn ` B ) ) |
| 15 | 1 2 3 4 | imasbas | |- ( ph -> B = ( Base ` U ) ) |
| 16 | 15 | fveq2d | |- ( ph -> ( TopOn ` B ) = ( TopOn ` ( Base ` U ) ) ) |
| 17 | 14 16 | eleqtrd | |- ( ph -> ( ( TopOpen ` R ) qTop F ) e. ( TopOn ` ( Base ` U ) ) ) |
| 18 | 7 17 | eqeltrd | |- ( ph -> ( TopOpen ` U ) e. ( TopOn ` ( Base ` U ) ) ) |
| 19 | eqid | |- ( Base ` U ) = ( Base ` U ) |
|
| 20 | 19 6 | istps | |- ( U e. TopSp <-> ( TopOpen ` U ) e. ( TopOn ` ( Base ` U ) ) ) |
| 21 | 18 20 | sylibr | |- ( ph -> U e. TopSp ) |