This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Substitute an operation value into an existential quantifier over an image. (Contributed by Scott Fenton, 20-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | imaeqexov.1 | ⊢ ( 𝑥 = ( 𝑦 𝐹 𝑧 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | imaeqexov | ⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝐵 × 𝐶 ) ⊆ 𝐴 ) → ( ∃ 𝑥 ∈ ( 𝐹 “ ( 𝐵 × 𝐶 ) ) 𝜑 ↔ ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaeqexov.1 | ⊢ ( 𝑥 = ( 𝑦 𝐹 𝑧 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | df-rex | ⊢ ( ∃ 𝑥 ∈ ( 𝐹 “ ( 𝐵 × 𝐶 ) ) 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ ( 𝐹 “ ( 𝐵 × 𝐶 ) ) ∧ 𝜑 ) ) | |
| 3 | ovelimab | ⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝐵 × 𝐶 ) ⊆ 𝐴 ) → ( 𝑥 ∈ ( 𝐹 “ ( 𝐵 × 𝐶 ) ) ↔ ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝑥 = ( 𝑦 𝐹 𝑧 ) ) ) | |
| 4 | 3 | anbi1d | ⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝐵 × 𝐶 ) ⊆ 𝐴 ) → ( ( 𝑥 ∈ ( 𝐹 “ ( 𝐵 × 𝐶 ) ) ∧ 𝜑 ) ↔ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝑥 = ( 𝑦 𝐹 𝑧 ) ∧ 𝜑 ) ) ) |
| 5 | r19.41v | ⊢ ( ∃ 𝑧 ∈ 𝐶 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) ∧ 𝜑 ) ↔ ( ∃ 𝑧 ∈ 𝐶 𝑥 = ( 𝑦 𝐹 𝑧 ) ∧ 𝜑 ) ) | |
| 6 | 5 | rexbii | ⊢ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) ∧ 𝜑 ) ↔ ∃ 𝑦 ∈ 𝐵 ( ∃ 𝑧 ∈ 𝐶 𝑥 = ( 𝑦 𝐹 𝑧 ) ∧ 𝜑 ) ) |
| 7 | r19.41v | ⊢ ( ∃ 𝑦 ∈ 𝐵 ( ∃ 𝑧 ∈ 𝐶 𝑥 = ( 𝑦 𝐹 𝑧 ) ∧ 𝜑 ) ↔ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝑥 = ( 𝑦 𝐹 𝑧 ) ∧ 𝜑 ) ) | |
| 8 | 6 7 | bitr2i | ⊢ ( ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝑥 = ( 𝑦 𝐹 𝑧 ) ∧ 𝜑 ) ↔ ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) ∧ 𝜑 ) ) |
| 9 | 4 8 | bitrdi | ⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝐵 × 𝐶 ) ⊆ 𝐴 ) → ( ( 𝑥 ∈ ( 𝐹 “ ( 𝐵 × 𝐶 ) ) ∧ 𝜑 ) ↔ ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) ∧ 𝜑 ) ) ) |
| 10 | 9 | exbidv | ⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝐵 × 𝐶 ) ⊆ 𝐴 ) → ( ∃ 𝑥 ( 𝑥 ∈ ( 𝐹 “ ( 𝐵 × 𝐶 ) ) ∧ 𝜑 ) ↔ ∃ 𝑥 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) ∧ 𝜑 ) ) ) |
| 11 | rexcom4 | ⊢ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ∃ 𝑧 ∈ 𝐶 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) ∧ 𝜑 ) ↔ ∃ 𝑥 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) ∧ 𝜑 ) ) | |
| 12 | rexcom4 | ⊢ ( ∃ 𝑧 ∈ 𝐶 ∃ 𝑥 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) ∧ 𝜑 ) ↔ ∃ 𝑥 ∃ 𝑧 ∈ 𝐶 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) ∧ 𝜑 ) ) | |
| 13 | ovex | ⊢ ( 𝑦 𝐹 𝑧 ) ∈ V | |
| 14 | 13 1 | ceqsexv | ⊢ ( ∃ 𝑥 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) ∧ 𝜑 ) ↔ 𝜓 ) |
| 15 | 14 | rexbii | ⊢ ( ∃ 𝑧 ∈ 𝐶 ∃ 𝑥 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) ∧ 𝜑 ) ↔ ∃ 𝑧 ∈ 𝐶 𝜓 ) |
| 16 | 12 15 | bitr3i | ⊢ ( ∃ 𝑥 ∃ 𝑧 ∈ 𝐶 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) ∧ 𝜑 ) ↔ ∃ 𝑧 ∈ 𝐶 𝜓 ) |
| 17 | 16 | rexbii | ⊢ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ∃ 𝑧 ∈ 𝐶 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) ∧ 𝜑 ) ↔ ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝜓 ) |
| 18 | 11 17 | bitr3i | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) ∧ 𝜑 ) ↔ ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝜓 ) |
| 19 | 10 18 | bitrdi | ⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝐵 × 𝐶 ) ⊆ 𝐴 ) → ( ∃ 𝑥 ( 𝑥 ∈ ( 𝐹 “ ( 𝐵 × 𝐶 ) ) ∧ 𝜑 ) ↔ ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝜓 ) ) |
| 20 | 2 19 | bitrid | ⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝐵 × 𝐶 ) ⊆ 𝐴 ) → ( ∃ 𝑥 ∈ ( 𝐹 “ ( 𝐵 × 𝐶 ) ) 𝜑 ↔ ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝜓 ) ) |