This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Substitute an operation value into a universal quantifier over an image. (Contributed by Scott Fenton, 20-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | imaeqexov.1 | ⊢ ( 𝑥 = ( 𝑦 𝐹 𝑧 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | imaeqalov | ⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝐵 × 𝐶 ) ⊆ 𝐴 ) → ( ∀ 𝑥 ∈ ( 𝐹 “ ( 𝐵 × 𝐶 ) ) 𝜑 ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaeqexov.1 | ⊢ ( 𝑥 = ( 𝑦 𝐹 𝑧 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | df-ral | ⊢ ( ∀ 𝑥 ∈ ( 𝐹 “ ( 𝐵 × 𝐶 ) ) 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ ( 𝐹 “ ( 𝐵 × 𝐶 ) ) → 𝜑 ) ) | |
| 3 | ovelimab | ⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝐵 × 𝐶 ) ⊆ 𝐴 ) → ( 𝑥 ∈ ( 𝐹 “ ( 𝐵 × 𝐶 ) ) ↔ ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝑥 = ( 𝑦 𝐹 𝑧 ) ) ) | |
| 4 | 3 | imbi1d | ⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝐵 × 𝐶 ) ⊆ 𝐴 ) → ( ( 𝑥 ∈ ( 𝐹 “ ( 𝐵 × 𝐶 ) ) → 𝜑 ) ↔ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ) ) |
| 5 | 4 | albidv | ⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝐵 × 𝐶 ) ⊆ 𝐴 ) → ( ∀ 𝑥 ( 𝑥 ∈ ( 𝐹 “ ( 𝐵 × 𝐶 ) ) → 𝜑 ) ↔ ∀ 𝑥 ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ) ) |
| 6 | 2 5 | bitrid | ⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝐵 × 𝐶 ) ⊆ 𝐴 ) → ( ∀ 𝑥 ∈ ( 𝐹 “ ( 𝐵 × 𝐶 ) ) 𝜑 ↔ ∀ 𝑥 ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ) ) |
| 7 | ralcom4 | ⊢ ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∀ 𝑧 ∈ 𝐶 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ↔ ∀ 𝑥 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ) | |
| 8 | r19.23v | ⊢ ( ∀ 𝑧 ∈ 𝐶 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ↔ ( ∃ 𝑧 ∈ 𝐶 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ) | |
| 9 | 8 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ↔ ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑧 ∈ 𝐶 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ) |
| 10 | r19.23v | ⊢ ( ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑧 ∈ 𝐶 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ↔ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ) | |
| 11 | 9 10 | bitri | ⊢ ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ↔ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ) |
| 12 | 11 | albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ↔ ∀ 𝑥 ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ) |
| 13 | 7 12 | bitri | ⊢ ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∀ 𝑧 ∈ 𝐶 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ↔ ∀ 𝑥 ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ) |
| 14 | ralcom4 | ⊢ ( ∀ 𝑧 ∈ 𝐶 ∀ 𝑥 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ↔ ∀ 𝑥 ∀ 𝑧 ∈ 𝐶 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ) | |
| 15 | ovex | ⊢ ( 𝑦 𝐹 𝑧 ) ∈ V | |
| 16 | 15 1 | ceqsalv | ⊢ ( ∀ 𝑥 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ↔ 𝜓 ) |
| 17 | 16 | ralbii | ⊢ ( ∀ 𝑧 ∈ 𝐶 ∀ 𝑥 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ↔ ∀ 𝑧 ∈ 𝐶 𝜓 ) |
| 18 | 14 17 | bitr3i | ⊢ ( ∀ 𝑥 ∀ 𝑧 ∈ 𝐶 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ↔ ∀ 𝑧 ∈ 𝐶 𝜓 ) |
| 19 | 18 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∀ 𝑧 ∈ 𝐶 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 𝜓 ) |
| 20 | 13 19 | bitr3i | ⊢ ( ∀ 𝑥 ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 𝜓 ) |
| 21 | 6 20 | bitrdi | ⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝐵 × 𝐶 ) ⊆ 𝐴 ) → ( ∀ 𝑥 ∈ ( 𝐹 “ ( 𝐵 × 𝐶 ) ) 𝜑 ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 𝜓 ) ) |