This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Indexed intersection of a restricted class abstraction. (Contributed by NM, 6-Dec-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iinrab2 | ⊢ ( ∩ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∩ 𝐵 ) = { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝐴 𝜑 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iineq1 | ⊢ ( 𝐴 = ∅ → ∩ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } = ∩ 𝑥 ∈ ∅ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) | |
| 2 | 0iin | ⊢ ∩ 𝑥 ∈ ∅ { 𝑦 ∈ 𝐵 ∣ 𝜑 } = V | |
| 3 | 1 2 | eqtrdi | ⊢ ( 𝐴 = ∅ → ∩ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } = V ) |
| 4 | 3 | ineq1d | ⊢ ( 𝐴 = ∅ → ( ∩ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∩ 𝐵 ) = ( V ∩ 𝐵 ) ) |
| 5 | incom | ⊢ ( V ∩ 𝐵 ) = ( 𝐵 ∩ V ) | |
| 6 | inv1 | ⊢ ( 𝐵 ∩ V ) = 𝐵 | |
| 7 | 5 6 | eqtri | ⊢ ( V ∩ 𝐵 ) = 𝐵 |
| 8 | 4 7 | eqtrdi | ⊢ ( 𝐴 = ∅ → ( ∩ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∩ 𝐵 ) = 𝐵 ) |
| 9 | rzal | ⊢ ( 𝐴 = ∅ → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ) | |
| 10 | rabid2 | ⊢ ( 𝐵 = { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝐴 𝜑 } ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 𝜑 ) | |
| 11 | ralcom | ⊢ ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ) | |
| 12 | 10 11 | bitr2i | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ↔ 𝐵 = { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝐴 𝜑 } ) |
| 13 | 9 12 | sylib | ⊢ ( 𝐴 = ∅ → 𝐵 = { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝐴 𝜑 } ) |
| 14 | 8 13 | eqtrd | ⊢ ( 𝐴 = ∅ → ( ∩ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∩ 𝐵 ) = { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝐴 𝜑 } ) |
| 15 | iinrab | ⊢ ( 𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } = { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝐴 𝜑 } ) | |
| 16 | 15 | ineq1d | ⊢ ( 𝐴 ≠ ∅ → ( ∩ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∩ 𝐵 ) = ( { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝐴 𝜑 } ∩ 𝐵 ) ) |
| 17 | ssrab2 | ⊢ { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝐴 𝜑 } ⊆ 𝐵 | |
| 18 | dfss | ⊢ ( { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝐴 𝜑 } ⊆ 𝐵 ↔ { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝐴 𝜑 } = ( { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝐴 𝜑 } ∩ 𝐵 ) ) | |
| 19 | 17 18 | mpbi | ⊢ { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝐴 𝜑 } = ( { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝐴 𝜑 } ∩ 𝐵 ) |
| 20 | 16 19 | eqtr4di | ⊢ ( 𝐴 ≠ ∅ → ( ∩ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∩ 𝐵 ) = { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝐴 𝜑 } ) |
| 21 | 14 20 | pm2.61ine | ⊢ ( ∩ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∩ 𝐵 ) = { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝐴 𝜑 } |