This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a 0-based finite set of sequential integers. (Contributed by Alexander van der Vekens, 18-Jun-2018) (Proof shortened by Alexander van der Vekens, 15-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ige2m1fz | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → ( 𝑁 − 1 ) ∈ ( 0 ... 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1eluzge0 | ⊢ 1 ∈ ( ℤ≥ ‘ 0 ) | |
| 2 | fzss1 | ⊢ ( 1 ∈ ( ℤ≥ ‘ 0 ) → ( 1 ... 𝑁 ) ⊆ ( 0 ... 𝑁 ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( 1 ... 𝑁 ) ⊆ ( 0 ... 𝑁 ) |
| 4 | 2z | ⊢ 2 ∈ ℤ | |
| 5 | 4 | a1i | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → 2 ∈ ℤ ) |
| 6 | nn0z | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → 𝑁 ∈ ℤ ) |
| 8 | simpr | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → 2 ≤ 𝑁 ) | |
| 9 | eluz2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁 ) ) | |
| 10 | 5 7 8 9 | syl3anbrc | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) |
| 11 | ige2m1fz1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 − 1 ) ∈ ( 1 ... 𝑁 ) ) | |
| 12 | 10 11 | syl | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → ( 𝑁 − 1 ) ∈ ( 1 ... 𝑁 ) ) |
| 13 | 3 12 | sselid | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → ( 𝑁 − 1 ) ∈ ( 0 ... 𝑁 ) ) |