This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a 0-based finite set of sequential integers. (Contributed by Alexander van der Vekens, 18-Jun-2018) (Proof shortened by Alexander van der Vekens, 15-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ige2m1fz | |- ( ( N e. NN0 /\ 2 <_ N ) -> ( N - 1 ) e. ( 0 ... N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1eluzge0 | |- 1 e. ( ZZ>= ` 0 ) |
|
| 2 | fzss1 | |- ( 1 e. ( ZZ>= ` 0 ) -> ( 1 ... N ) C_ ( 0 ... N ) ) |
|
| 3 | 1 2 | ax-mp | |- ( 1 ... N ) C_ ( 0 ... N ) |
| 4 | 2z | |- 2 e. ZZ |
|
| 5 | 4 | a1i | |- ( ( N e. NN0 /\ 2 <_ N ) -> 2 e. ZZ ) |
| 6 | nn0z | |- ( N e. NN0 -> N e. ZZ ) |
|
| 7 | 6 | adantr | |- ( ( N e. NN0 /\ 2 <_ N ) -> N e. ZZ ) |
| 8 | simpr | |- ( ( N e. NN0 /\ 2 <_ N ) -> 2 <_ N ) |
|
| 9 | eluz2 | |- ( N e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ N e. ZZ /\ 2 <_ N ) ) |
|
| 10 | 5 7 8 9 | syl3anbrc | |- ( ( N e. NN0 /\ 2 <_ N ) -> N e. ( ZZ>= ` 2 ) ) |
| 11 | ige2m1fz1 | |- ( N e. ( ZZ>= ` 2 ) -> ( N - 1 ) e. ( 1 ... N ) ) |
|
| 12 | 10 11 | syl | |- ( ( N e. NN0 /\ 2 <_ N ) -> ( N - 1 ) e. ( 1 ... N ) ) |
| 13 | 3 12 | sselid | |- ( ( N e. NN0 /\ 2 <_ N ) -> ( N - 1 ) e. ( 0 ... N ) ) |