This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identically zero function is a continuous Hilbert space operator. (Contributed by NM, 7-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0cnop | ⊢ 0hop ∈ ContOp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ho0f | ⊢ 0hop : ℋ ⟶ ℋ | |
| 2 | 1rp | ⊢ 1 ∈ ℝ+ | |
| 3 | ho0val | ⊢ ( 𝑤 ∈ ℋ → ( 0hop ‘ 𝑤 ) = 0ℎ ) | |
| 4 | ho0val | ⊢ ( 𝑥 ∈ ℋ → ( 0hop ‘ 𝑥 ) = 0ℎ ) | |
| 5 | 3 4 | oveqan12rd | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ ) → ( ( 0hop ‘ 𝑤 ) −ℎ ( 0hop ‘ 𝑥 ) ) = ( 0ℎ −ℎ 0ℎ ) ) |
| 6 | 5 | adantlr | ⊢ ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) → ( ( 0hop ‘ 𝑤 ) −ℎ ( 0hop ‘ 𝑥 ) ) = ( 0ℎ −ℎ 0ℎ ) ) |
| 7 | ax-hv0cl | ⊢ 0ℎ ∈ ℋ | |
| 8 | hvsubid | ⊢ ( 0ℎ ∈ ℋ → ( 0ℎ −ℎ 0ℎ ) = 0ℎ ) | |
| 9 | 7 8 | ax-mp | ⊢ ( 0ℎ −ℎ 0ℎ ) = 0ℎ |
| 10 | 6 9 | eqtrdi | ⊢ ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) → ( ( 0hop ‘ 𝑤 ) −ℎ ( 0hop ‘ 𝑥 ) ) = 0ℎ ) |
| 11 | 10 | fveq2d | ⊢ ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) → ( normℎ ‘ ( ( 0hop ‘ 𝑤 ) −ℎ ( 0hop ‘ 𝑥 ) ) ) = ( normℎ ‘ 0ℎ ) ) |
| 12 | norm0 | ⊢ ( normℎ ‘ 0ℎ ) = 0 | |
| 13 | 11 12 | eqtrdi | ⊢ ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) → ( normℎ ‘ ( ( 0hop ‘ 𝑤 ) −ℎ ( 0hop ‘ 𝑥 ) ) ) = 0 ) |
| 14 | rpgt0 | ⊢ ( 𝑦 ∈ ℝ+ → 0 < 𝑦 ) | |
| 15 | 14 | ad2antlr | ⊢ ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) → 0 < 𝑦 ) |
| 16 | 13 15 | eqbrtrd | ⊢ ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) → ( normℎ ‘ ( ( 0hop ‘ 𝑤 ) −ℎ ( 0hop ‘ 𝑥 ) ) ) < 𝑦 ) |
| 17 | 16 | a1d | ⊢ ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) → ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 1 → ( normℎ ‘ ( ( 0hop ‘ 𝑤 ) −ℎ ( 0hop ‘ 𝑥 ) ) ) < 𝑦 ) ) |
| 18 | 17 | ralrimiva | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+ ) → ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 1 → ( normℎ ‘ ( ( 0hop ‘ 𝑤 ) −ℎ ( 0hop ‘ 𝑥 ) ) ) < 𝑦 ) ) |
| 19 | breq2 | ⊢ ( 𝑧 = 1 → ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 ↔ ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 1 ) ) | |
| 20 | 19 | rspceaimv | ⊢ ( ( 1 ∈ ℝ+ ∧ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 1 → ( normℎ ‘ ( ( 0hop ‘ 𝑤 ) −ℎ ( 0hop ‘ 𝑥 ) ) ) < 𝑦 ) ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 0hop ‘ 𝑤 ) −ℎ ( 0hop ‘ 𝑥 ) ) ) < 𝑦 ) ) |
| 21 | 2 18 20 | sylancr | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 0hop ‘ 𝑤 ) −ℎ ( 0hop ‘ 𝑥 ) ) ) < 𝑦 ) ) |
| 22 | 21 | rgen2 | ⊢ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 0hop ‘ 𝑤 ) −ℎ ( 0hop ‘ 𝑥 ) ) ) < 𝑦 ) |
| 23 | elcnop | ⊢ ( 0hop ∈ ContOp ↔ ( 0hop : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 0hop ‘ 𝑤 ) −ℎ ( 0hop ‘ 𝑥 ) ) ) < 𝑦 ) ) ) | |
| 24 | 1 22 23 | mpbir2an | ⊢ 0hop ∈ ContOp |