This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A constant function is uniformly continuous. Deduction form. Example 1 of BourbakiTop1 p. II.6. (Contributed by Thierry Arnoux, 16-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cstucnd.1 | ⊢ ( 𝜑 → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) | |
| cstucnd.2 | ⊢ ( 𝜑 → 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) | ||
| cstucnd.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑌 ) | ||
| Assertion | cstucnd | ⊢ ( 𝜑 → ( 𝑋 × { 𝐴 } ) ∈ ( 𝑈 Cnu 𝑉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cstucnd.1 | ⊢ ( 𝜑 → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) | |
| 2 | cstucnd.2 | ⊢ ( 𝜑 → 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) | |
| 3 | cstucnd.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑌 ) | |
| 4 | fconst6g | ⊢ ( 𝐴 ∈ 𝑌 → ( 𝑋 × { 𝐴 } ) : 𝑋 ⟶ 𝑌 ) | |
| 5 | 3 4 | syl | ⊢ ( 𝜑 → ( 𝑋 × { 𝐴 } ) : 𝑋 ⟶ 𝑌 ) |
| 6 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑉 ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) |
| 7 | ustne0 | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑈 ≠ ∅ ) | |
| 8 | 6 7 | syl | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑉 ) → 𝑈 ≠ ∅ ) |
| 9 | 2 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑉 ) ∧ 𝑟 ∈ 𝑈 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) |
| 10 | simpllr | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑉 ) ∧ 𝑟 ∈ 𝑈 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑠 ∈ 𝑉 ) | |
| 11 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑉 ) ∧ 𝑟 ∈ 𝑈 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝐴 ∈ 𝑌 ) |
| 12 | ustref | ⊢ ( ( 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ∧ 𝑠 ∈ 𝑉 ∧ 𝐴 ∈ 𝑌 ) → 𝐴 𝑠 𝐴 ) | |
| 13 | 9 10 11 12 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑉 ) ∧ 𝑟 ∈ 𝑈 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝐴 𝑠 𝐴 ) |
| 14 | simprl | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑉 ) ∧ 𝑟 ∈ 𝑈 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑥 ∈ 𝑋 ) | |
| 15 | fvconst2g | ⊢ ( ( 𝐴 ∈ 𝑌 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑋 × { 𝐴 } ) ‘ 𝑥 ) = 𝐴 ) | |
| 16 | 11 14 15 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑉 ) ∧ 𝑟 ∈ 𝑈 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑋 × { 𝐴 } ) ‘ 𝑥 ) = 𝐴 ) |
| 17 | simprr | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑉 ) ∧ 𝑟 ∈ 𝑈 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑦 ∈ 𝑋 ) | |
| 18 | fvconst2g | ⊢ ( ( 𝐴 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑋 × { 𝐴 } ) ‘ 𝑦 ) = 𝐴 ) | |
| 19 | 11 17 18 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑉 ) ∧ 𝑟 ∈ 𝑈 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑋 × { 𝐴 } ) ‘ 𝑦 ) = 𝐴 ) |
| 20 | 13 16 19 | 3brtr4d | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑉 ) ∧ 𝑟 ∈ 𝑈 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑋 × { 𝐴 } ) ‘ 𝑥 ) 𝑠 ( ( 𝑋 × { 𝐴 } ) ‘ 𝑦 ) ) |
| 21 | 20 | a1d | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑉 ) ∧ 𝑟 ∈ 𝑈 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝑟 𝑦 → ( ( 𝑋 × { 𝐴 } ) ‘ 𝑥 ) 𝑠 ( ( 𝑋 × { 𝐴 } ) ‘ 𝑦 ) ) ) |
| 22 | 21 | ralrimivva | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑉 ) ∧ 𝑟 ∈ 𝑈 ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( ( 𝑋 × { 𝐴 } ) ‘ 𝑥 ) 𝑠 ( ( 𝑋 × { 𝐴 } ) ‘ 𝑦 ) ) ) |
| 23 | 22 | reximdva0 | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑉 ) ∧ 𝑈 ≠ ∅ ) → ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( ( 𝑋 × { 𝐴 } ) ‘ 𝑥 ) 𝑠 ( ( 𝑋 × { 𝐴 } ) ‘ 𝑦 ) ) ) |
| 24 | 8 23 | mpdan | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑉 ) → ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( ( 𝑋 × { 𝐴 } ) ‘ 𝑥 ) 𝑠 ( ( 𝑋 × { 𝐴 } ) ‘ 𝑦 ) ) ) |
| 25 | 24 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑠 ∈ 𝑉 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( ( 𝑋 × { 𝐴 } ) ‘ 𝑥 ) 𝑠 ( ( 𝑋 × { 𝐴 } ) ‘ 𝑦 ) ) ) |
| 26 | isucn | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) → ( ( 𝑋 × { 𝐴 } ) ∈ ( 𝑈 Cnu 𝑉 ) ↔ ( ( 𝑋 × { 𝐴 } ) : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑠 ∈ 𝑉 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( ( 𝑋 × { 𝐴 } ) ‘ 𝑥 ) 𝑠 ( ( 𝑋 × { 𝐴 } ) ‘ 𝑦 ) ) ) ) ) | |
| 27 | 1 2 26 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑋 × { 𝐴 } ) ∈ ( 𝑈 Cnu 𝑉 ) ↔ ( ( 𝑋 × { 𝐴 } ) : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑠 ∈ 𝑉 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( ( 𝑋 × { 𝐴 } ) ‘ 𝑥 ) 𝑠 ( ( 𝑋 × { 𝐴 } ) ‘ 𝑦 ) ) ) ) ) |
| 28 | 5 25 27 | mpbir2and | ⊢ ( 𝜑 → ( 𝑋 × { 𝐴 } ) ∈ ( 𝑈 Cnu 𝑉 ) ) |