This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The structure with the singleton containing only the identity function restricted to a set as base set and the function composition as group operation (constructed by (structure) restricting the symmetric group to that singleton) is a permutation group (group consisting of permutations). (Contributed by AV, 17-Mar-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | idressubgsymg.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) | |
| idrespermg.e | ⊢ 𝐸 = ( 𝐺 ↾s { ( I ↾ 𝐴 ) } ) | ||
| Assertion | idrespermg | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐸 ∈ Grp ∧ ( Base ‘ 𝐸 ) ⊆ ( Base ‘ 𝐺 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idressubgsymg.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) | |
| 2 | idrespermg.e | ⊢ 𝐸 = ( 𝐺 ↾s { ( I ↾ 𝐴 ) } ) | |
| 3 | 1 | idressubgsymg | ⊢ ( 𝐴 ∈ 𝑉 → { ( I ↾ 𝐴 ) } ∈ ( SubGrp ‘ 𝐺 ) ) |
| 4 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 5 | 1 4 | pgrpsubgsymgbi | ⊢ ( 𝐴 ∈ 𝑉 → ( { ( I ↾ 𝐴 ) } ∈ ( SubGrp ‘ 𝐺 ) ↔ ( { ( I ↾ 𝐴 ) } ⊆ ( Base ‘ 𝐺 ) ∧ ( 𝐺 ↾s { ( I ↾ 𝐴 ) } ) ∈ Grp ) ) ) |
| 6 | snex | ⊢ { ( I ↾ 𝐴 ) } ∈ V | |
| 7 | 2 4 | ressbas | ⊢ ( { ( I ↾ 𝐴 ) } ∈ V → ( { ( I ↾ 𝐴 ) } ∩ ( Base ‘ 𝐺 ) ) = ( Base ‘ 𝐸 ) ) |
| 8 | 6 7 | mp1i | ⊢ ( 𝐴 ∈ 𝑉 → ( { ( I ↾ 𝐴 ) } ∩ ( Base ‘ 𝐺 ) ) = ( Base ‘ 𝐸 ) ) |
| 9 | inss2 | ⊢ ( { ( I ↾ 𝐴 ) } ∩ ( Base ‘ 𝐺 ) ) ⊆ ( Base ‘ 𝐺 ) | |
| 10 | 8 9 | eqsstrrdi | ⊢ ( 𝐴 ∈ 𝑉 → ( Base ‘ 𝐸 ) ⊆ ( Base ‘ 𝐺 ) ) |
| 11 | 2 | eqcomi | ⊢ ( 𝐺 ↾s { ( I ↾ 𝐴 ) } ) = 𝐸 |
| 12 | 11 | eleq1i | ⊢ ( ( 𝐺 ↾s { ( I ↾ 𝐴 ) } ) ∈ Grp ↔ 𝐸 ∈ Grp ) |
| 13 | 12 | biimpi | ⊢ ( ( 𝐺 ↾s { ( I ↾ 𝐴 ) } ) ∈ Grp → 𝐸 ∈ Grp ) |
| 14 | 13 | adantl | ⊢ ( ( { ( I ↾ 𝐴 ) } ⊆ ( Base ‘ 𝐺 ) ∧ ( 𝐺 ↾s { ( I ↾ 𝐴 ) } ) ∈ Grp ) → 𝐸 ∈ Grp ) |
| 15 | 10 14 | anim12ci | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( { ( I ↾ 𝐴 ) } ⊆ ( Base ‘ 𝐺 ) ∧ ( 𝐺 ↾s { ( I ↾ 𝐴 ) } ) ∈ Grp ) ) → ( 𝐸 ∈ Grp ∧ ( Base ‘ 𝐸 ) ⊆ ( Base ‘ 𝐺 ) ) ) |
| 16 | 15 | ex | ⊢ ( 𝐴 ∈ 𝑉 → ( ( { ( I ↾ 𝐴 ) } ⊆ ( Base ‘ 𝐺 ) ∧ ( 𝐺 ↾s { ( I ↾ 𝐴 ) } ) ∈ Grp ) → ( 𝐸 ∈ Grp ∧ ( Base ‘ 𝐸 ) ⊆ ( Base ‘ 𝐺 ) ) ) ) |
| 17 | 5 16 | sylbid | ⊢ ( 𝐴 ∈ 𝑉 → ( { ( I ↾ 𝐴 ) } ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐸 ∈ Grp ∧ ( Base ‘ 𝐸 ) ⊆ ( Base ‘ 𝐺 ) ) ) ) |
| 18 | 3 17 | mpd | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐸 ∈ Grp ∧ ( Base ‘ 𝐸 ) ⊆ ( Base ‘ 𝐺 ) ) ) |