This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The structure with the singleton containing only the identity function restricted to a set as base set and the function composition as group operation (constructed by (structure) restricting the symmetric group to that singleton) is a permutation group (group consisting of permutations). (Contributed by AV, 17-Mar-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | idressubgsymg.g | |- G = ( SymGrp ` A ) |
|
| idrespermg.e | |- E = ( G |`s { ( _I |` A ) } ) |
||
| Assertion | idrespermg | |- ( A e. V -> ( E e. Grp /\ ( Base ` E ) C_ ( Base ` G ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idressubgsymg.g | |- G = ( SymGrp ` A ) |
|
| 2 | idrespermg.e | |- E = ( G |`s { ( _I |` A ) } ) |
|
| 3 | 1 | idressubgsymg | |- ( A e. V -> { ( _I |` A ) } e. ( SubGrp ` G ) ) |
| 4 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 5 | 1 4 | pgrpsubgsymgbi | |- ( A e. V -> ( { ( _I |` A ) } e. ( SubGrp ` G ) <-> ( { ( _I |` A ) } C_ ( Base ` G ) /\ ( G |`s { ( _I |` A ) } ) e. Grp ) ) ) |
| 6 | snex | |- { ( _I |` A ) } e. _V |
|
| 7 | 2 4 | ressbas | |- ( { ( _I |` A ) } e. _V -> ( { ( _I |` A ) } i^i ( Base ` G ) ) = ( Base ` E ) ) |
| 8 | 6 7 | mp1i | |- ( A e. V -> ( { ( _I |` A ) } i^i ( Base ` G ) ) = ( Base ` E ) ) |
| 9 | inss2 | |- ( { ( _I |` A ) } i^i ( Base ` G ) ) C_ ( Base ` G ) |
|
| 10 | 8 9 | eqsstrrdi | |- ( A e. V -> ( Base ` E ) C_ ( Base ` G ) ) |
| 11 | 2 | eqcomi | |- ( G |`s { ( _I |` A ) } ) = E |
| 12 | 11 | eleq1i | |- ( ( G |`s { ( _I |` A ) } ) e. Grp <-> E e. Grp ) |
| 13 | 12 | biimpi | |- ( ( G |`s { ( _I |` A ) } ) e. Grp -> E e. Grp ) |
| 14 | 13 | adantl | |- ( ( { ( _I |` A ) } C_ ( Base ` G ) /\ ( G |`s { ( _I |` A ) } ) e. Grp ) -> E e. Grp ) |
| 15 | 10 14 | anim12ci | |- ( ( A e. V /\ ( { ( _I |` A ) } C_ ( Base ` G ) /\ ( G |`s { ( _I |` A ) } ) e. Grp ) ) -> ( E e. Grp /\ ( Base ` E ) C_ ( Base ` G ) ) ) |
| 16 | 15 | ex | |- ( A e. V -> ( ( { ( _I |` A ) } C_ ( Base ` G ) /\ ( G |`s { ( _I |` A ) } ) e. Grp ) -> ( E e. Grp /\ ( Base ` E ) C_ ( Base ` G ) ) ) ) |
| 17 | 5 16 | sylbid | |- ( A e. V -> ( { ( _I |` A ) } e. ( SubGrp ` G ) -> ( E e. Grp /\ ( Base ` E ) C_ ( Base ` G ) ) ) ) |
| 18 | 3 17 | mpd | |- ( A e. V -> ( E e. Grp /\ ( Base ` E ) C_ ( Base ` G ) ) ) |