This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to state that a relation is reflexive on a class. (Contributed by FL, 15-Jan-2012) (Proof shortened by Mario Carneiro, 3-Nov-2015) (Revised by NM, 30-Mar-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | idref | ⊢ ( ( I ↾ 𝐴 ) ⊆ 𝑅 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 𝑅 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ 〈 𝑥 , 𝑥 〉 ) = ( 𝑥 ∈ 𝐴 ↦ 〈 𝑥 , 𝑥 〉 ) | |
| 2 | 1 | fmpt | ⊢ ( ∀ 𝑥 ∈ 𝐴 〈 𝑥 , 𝑥 〉 ∈ 𝑅 ↔ ( 𝑥 ∈ 𝐴 ↦ 〈 𝑥 , 𝑥 〉 ) : 𝐴 ⟶ 𝑅 ) |
| 3 | opex | ⊢ 〈 𝑥 , 𝑥 〉 ∈ V | |
| 4 | 3 1 | fnmpti | ⊢ ( 𝑥 ∈ 𝐴 ↦ 〈 𝑥 , 𝑥 〉 ) Fn 𝐴 |
| 5 | df-f | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 〈 𝑥 , 𝑥 〉 ) : 𝐴 ⟶ 𝑅 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 〈 𝑥 , 𝑥 〉 ) Fn 𝐴 ∧ ran ( 𝑥 ∈ 𝐴 ↦ 〈 𝑥 , 𝑥 〉 ) ⊆ 𝑅 ) ) | |
| 6 | 4 5 | mpbiran | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 〈 𝑥 , 𝑥 〉 ) : 𝐴 ⟶ 𝑅 ↔ ran ( 𝑥 ∈ 𝐴 ↦ 〈 𝑥 , 𝑥 〉 ) ⊆ 𝑅 ) |
| 7 | 2 6 | bitri | ⊢ ( ∀ 𝑥 ∈ 𝐴 〈 𝑥 , 𝑥 〉 ∈ 𝑅 ↔ ran ( 𝑥 ∈ 𝐴 ↦ 〈 𝑥 , 𝑥 〉 ) ⊆ 𝑅 ) |
| 8 | df-br | ⊢ ( 𝑥 𝑅 𝑥 ↔ 〈 𝑥 , 𝑥 〉 ∈ 𝑅 ) | |
| 9 | 8 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝑥 𝑅 𝑥 ↔ ∀ 𝑥 ∈ 𝐴 〈 𝑥 , 𝑥 〉 ∈ 𝑅 ) |
| 10 | mptresid | ⊢ ( I ↾ 𝐴 ) = ( 𝑥 ∈ 𝐴 ↦ 𝑥 ) | |
| 11 | vex | ⊢ 𝑥 ∈ V | |
| 12 | 11 | fnasrn | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝑥 ) = ran ( 𝑥 ∈ 𝐴 ↦ 〈 𝑥 , 𝑥 〉 ) |
| 13 | 10 12 | eqtri | ⊢ ( I ↾ 𝐴 ) = ran ( 𝑥 ∈ 𝐴 ↦ 〈 𝑥 , 𝑥 〉 ) |
| 14 | 13 | sseq1i | ⊢ ( ( I ↾ 𝐴 ) ⊆ 𝑅 ↔ ran ( 𝑥 ∈ 𝐴 ↦ 〈 𝑥 , 𝑥 〉 ) ⊆ 𝑅 ) |
| 15 | 7 9 14 | 3bitr4ri | ⊢ ( ( I ↾ 𝐴 ) ⊆ 𝑅 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 𝑅 𝑥 ) |