This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The quotient topology induced by the identity function is the original topology. (Contributed by Mario Carneiro, 30-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | idqtop | |- ( J e. ( TopOn ` X ) -> ( J qTop ( _I |` X ) ) = J ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvresid | |- `' ( _I |` X ) = ( _I |` X ) |
|
| 2 | 1 | imaeq1i | |- ( `' ( _I |` X ) " x ) = ( ( _I |` X ) " x ) |
| 3 | resiima | |- ( x C_ X -> ( ( _I |` X ) " x ) = x ) |
|
| 4 | 3 | adantl | |- ( ( J e. ( TopOn ` X ) /\ x C_ X ) -> ( ( _I |` X ) " x ) = x ) |
| 5 | 2 4 | eqtrid | |- ( ( J e. ( TopOn ` X ) /\ x C_ X ) -> ( `' ( _I |` X ) " x ) = x ) |
| 6 | 5 | eleq1d | |- ( ( J e. ( TopOn ` X ) /\ x C_ X ) -> ( ( `' ( _I |` X ) " x ) e. J <-> x e. J ) ) |
| 7 | 6 | pm5.32da | |- ( J e. ( TopOn ` X ) -> ( ( x C_ X /\ ( `' ( _I |` X ) " x ) e. J ) <-> ( x C_ X /\ x e. J ) ) ) |
| 8 | f1oi | |- ( _I |` X ) : X -1-1-onto-> X |
|
| 9 | f1ofo | |- ( ( _I |` X ) : X -1-1-onto-> X -> ( _I |` X ) : X -onto-> X ) |
|
| 10 | 8 9 | mp1i | |- ( J e. ( TopOn ` X ) -> ( _I |` X ) : X -onto-> X ) |
| 11 | elqtop3 | |- ( ( J e. ( TopOn ` X ) /\ ( _I |` X ) : X -onto-> X ) -> ( x e. ( J qTop ( _I |` X ) ) <-> ( x C_ X /\ ( `' ( _I |` X ) " x ) e. J ) ) ) |
|
| 12 | 10 11 | mpdan | |- ( J e. ( TopOn ` X ) -> ( x e. ( J qTop ( _I |` X ) ) <-> ( x C_ X /\ ( `' ( _I |` X ) " x ) e. J ) ) ) |
| 13 | toponss | |- ( ( J e. ( TopOn ` X ) /\ x e. J ) -> x C_ X ) |
|
| 14 | 13 | ex | |- ( J e. ( TopOn ` X ) -> ( x e. J -> x C_ X ) ) |
| 15 | 14 | pm4.71rd | |- ( J e. ( TopOn ` X ) -> ( x e. J <-> ( x C_ X /\ x e. J ) ) ) |
| 16 | 7 12 15 | 3bitr4d | |- ( J e. ( TopOn ` X ) -> ( x e. ( J qTop ( _I |` X ) ) <-> x e. J ) ) |
| 17 | 16 | eqrdv | |- ( J e. ( TopOn ` X ) -> ( J qTop ( _I |` X ) ) = J ) |