This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for qtopcmp and qtopconn . (Contributed by Mario Carneiro, 24-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qtopcmp.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| qtopcmplem.1 | ⊢ ( 𝐽 ∈ 𝐴 → 𝐽 ∈ Top ) | ||
| qtopcmplem.2 | ⊢ ( ( 𝐽 ∈ 𝐴 ∧ 𝐹 : 𝑋 –onto→ ∪ ( 𝐽 qTop 𝐹 ) ∧ 𝐹 ∈ ( 𝐽 Cn ( 𝐽 qTop 𝐹 ) ) ) → ( 𝐽 qTop 𝐹 ) ∈ 𝐴 ) | ||
| Assertion | qtopcmplem | ⊢ ( ( 𝐽 ∈ 𝐴 ∧ 𝐹 Fn 𝑋 ) → ( 𝐽 qTop 𝐹 ) ∈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qtopcmp.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | qtopcmplem.1 | ⊢ ( 𝐽 ∈ 𝐴 → 𝐽 ∈ Top ) | |
| 3 | qtopcmplem.2 | ⊢ ( ( 𝐽 ∈ 𝐴 ∧ 𝐹 : 𝑋 –onto→ ∪ ( 𝐽 qTop 𝐹 ) ∧ 𝐹 ∈ ( 𝐽 Cn ( 𝐽 qTop 𝐹 ) ) ) → ( 𝐽 qTop 𝐹 ) ∈ 𝐴 ) | |
| 4 | simpl | ⊢ ( ( 𝐽 ∈ 𝐴 ∧ 𝐹 Fn 𝑋 ) → 𝐽 ∈ 𝐴 ) | |
| 5 | simpr | ⊢ ( ( 𝐽 ∈ 𝐴 ∧ 𝐹 Fn 𝑋 ) → 𝐹 Fn 𝑋 ) | |
| 6 | dffn4 | ⊢ ( 𝐹 Fn 𝑋 ↔ 𝐹 : 𝑋 –onto→ ran 𝐹 ) | |
| 7 | 5 6 | sylib | ⊢ ( ( 𝐽 ∈ 𝐴 ∧ 𝐹 Fn 𝑋 ) → 𝐹 : 𝑋 –onto→ ran 𝐹 ) |
| 8 | 1 | qtopuni | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 : 𝑋 –onto→ ran 𝐹 ) → ran 𝐹 = ∪ ( 𝐽 qTop 𝐹 ) ) |
| 9 | 2 8 | sylan | ⊢ ( ( 𝐽 ∈ 𝐴 ∧ 𝐹 : 𝑋 –onto→ ran 𝐹 ) → ran 𝐹 = ∪ ( 𝐽 qTop 𝐹 ) ) |
| 10 | 6 9 | sylan2b | ⊢ ( ( 𝐽 ∈ 𝐴 ∧ 𝐹 Fn 𝑋 ) → ran 𝐹 = ∪ ( 𝐽 qTop 𝐹 ) ) |
| 11 | foeq3 | ⊢ ( ran 𝐹 = ∪ ( 𝐽 qTop 𝐹 ) → ( 𝐹 : 𝑋 –onto→ ran 𝐹 ↔ 𝐹 : 𝑋 –onto→ ∪ ( 𝐽 qTop 𝐹 ) ) ) | |
| 12 | 10 11 | syl | ⊢ ( ( 𝐽 ∈ 𝐴 ∧ 𝐹 Fn 𝑋 ) → ( 𝐹 : 𝑋 –onto→ ran 𝐹 ↔ 𝐹 : 𝑋 –onto→ ∪ ( 𝐽 qTop 𝐹 ) ) ) |
| 13 | 7 12 | mpbid | ⊢ ( ( 𝐽 ∈ 𝐴 ∧ 𝐹 Fn 𝑋 ) → 𝐹 : 𝑋 –onto→ ∪ ( 𝐽 qTop 𝐹 ) ) |
| 14 | 1 | toptopon | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 15 | 2 14 | sylib | ⊢ ( 𝐽 ∈ 𝐴 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 16 | qtopid | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 Fn 𝑋 ) → 𝐹 ∈ ( 𝐽 Cn ( 𝐽 qTop 𝐹 ) ) ) | |
| 17 | 15 16 | sylan | ⊢ ( ( 𝐽 ∈ 𝐴 ∧ 𝐹 Fn 𝑋 ) → 𝐹 ∈ ( 𝐽 Cn ( 𝐽 qTop 𝐹 ) ) ) |
| 18 | 4 13 17 3 | syl3anc | ⊢ ( ( 𝐽 ∈ 𝐴 ∧ 𝐹 Fn 𝑋 ) → ( 𝐽 qTop 𝐹 ) ∈ 𝐴 ) |