This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Identity intersection with a square Cartesian product in subclass relation with an intersection with the same Cartesian product. (Contributed by Peter Mazsa, 4-Mar-2019) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | idinxpssinxp2 | ⊢ ( ( I ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ↔ ∀ 𝑥 ∈ 𝐴 𝑥 𝑅 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idinxpresid | ⊢ ( I ∩ ( 𝐴 × 𝐴 ) ) = ( I ↾ 𝐴 ) | |
| 2 | 1 | sseq1i | ⊢ ( ( I ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ↔ ( I ↾ 𝐴 ) ⊆ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) |
| 3 | idrefALT | ⊢ ( ( I ↾ 𝐴 ) ⊆ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) | |
| 4 | brinxp2 | ⊢ ( 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑥 𝑅 𝑥 ) ) | |
| 5 | pm4.24 | ⊢ ( 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) | |
| 6 | 5 | anbi1i | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝑥 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑥 𝑅 𝑥 ) ) |
| 7 | 4 6 | bitr4i | ⊢ ( 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝑥 ) ) |
| 8 | 7 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝑥 ) ) |
| 9 | 2 3 8 | 3bitri | ⊢ ( ( I ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝑥 ) ) |
| 10 | ralanid | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐴 𝑥 𝑅 𝑥 ) | |
| 11 | 9 10 | bitri | ⊢ ( ( I ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ↔ ∀ 𝑥 ∈ 𝐴 𝑥 𝑅 𝑥 ) |