This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Identity intersection with a square Cartesian product in subclass relation with an intersection with the same Cartesian product. (Contributed by Peter Mazsa, 4-Mar-2019) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | idinxpssinxp2 | |- ( ( _I i^i ( A X. A ) ) C_ ( R i^i ( A X. A ) ) <-> A. x e. A x R x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idinxpresid | |- ( _I i^i ( A X. A ) ) = ( _I |` A ) |
|
| 2 | 1 | sseq1i | |- ( ( _I i^i ( A X. A ) ) C_ ( R i^i ( A X. A ) ) <-> ( _I |` A ) C_ ( R i^i ( A X. A ) ) ) |
| 3 | idrefALT | |- ( ( _I |` A ) C_ ( R i^i ( A X. A ) ) <-> A. x e. A x ( R i^i ( A X. A ) ) x ) |
|
| 4 | brinxp2 | |- ( x ( R i^i ( A X. A ) ) x <-> ( ( x e. A /\ x e. A ) /\ x R x ) ) |
|
| 5 | pm4.24 | |- ( x e. A <-> ( x e. A /\ x e. A ) ) |
|
| 6 | 5 | anbi1i | |- ( ( x e. A /\ x R x ) <-> ( ( x e. A /\ x e. A ) /\ x R x ) ) |
| 7 | 4 6 | bitr4i | |- ( x ( R i^i ( A X. A ) ) x <-> ( x e. A /\ x R x ) ) |
| 8 | 7 | ralbii | |- ( A. x e. A x ( R i^i ( A X. A ) ) x <-> A. x e. A ( x e. A /\ x R x ) ) |
| 9 | 2 3 8 | 3bitri | |- ( ( _I i^i ( A X. A ) ) C_ ( R i^i ( A X. A ) ) <-> A. x e. A ( x e. A /\ x R x ) ) |
| 10 | ralanid | |- ( A. x e. A ( x e. A /\ x R x ) <-> A. x e. A x R x ) |
|
| 11 | 9 10 | bitri | |- ( ( _I i^i ( A X. A ) ) C_ ( R i^i ( A X. A ) ) <-> A. x e. A x R x ) |