This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for restricted universal quantification. (Contributed by Peter Mazsa, 30-Dec-2018) (Proof shortened by Wolf Lammen, 29-Jun-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ralanid | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ∀ 𝑥 ∈ 𝐴 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ibar | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) | |
| 2 | 1 | bicomd | ⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ 𝜑 ) ) |
| 3 | 2 | ralbiia | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ∀ 𝑥 ∈ 𝐴 𝜑 ) |