This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity functor for a subcategory is an "inclusion functor" from the subcategory into its supercategory. (Contributed by AV, 29-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | idfusubc.s | ⊢ 𝑆 = ( 𝐶 ↾cat 𝐽 ) | |
| idfusubc.i | ⊢ 𝐼 = ( idfunc ‘ 𝑆 ) | ||
| idfusubc.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| Assertion | idfusubc | ⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → 𝐼 = 〈 ( I ↾ 𝐵 ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 𝐽 𝑦 ) ) ) 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idfusubc.s | ⊢ 𝑆 = ( 𝐶 ↾cat 𝐽 ) | |
| 2 | idfusubc.i | ⊢ 𝐼 = ( idfunc ‘ 𝑆 ) | |
| 3 | idfusubc.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 4 | 1 2 3 | idfusubc0 | ⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → 𝐼 = 〈 ( I ↾ 𝐵 ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 ( Hom ‘ 𝑆 ) 𝑦 ) ) ) 〉 ) |
| 5 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 6 | subcrcl | ⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → 𝐶 ∈ Cat ) | |
| 7 | id | ⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) | |
| 8 | eqidd | ⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → dom dom 𝐽 = dom dom 𝐽 ) | |
| 9 | 7 8 | subcfn | ⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → 𝐽 Fn ( dom dom 𝐽 × dom dom 𝐽 ) ) |
| 10 | 7 9 5 | subcss1 | ⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → dom dom 𝐽 ⊆ ( Base ‘ 𝐶 ) ) |
| 11 | 1 5 6 9 10 | reschom | ⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → 𝐽 = ( Hom ‘ 𝑆 ) ) |
| 12 | 11 | eqcomd | ⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → ( Hom ‘ 𝑆 ) = 𝐽 ) |
| 13 | 12 | oveqd | ⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → ( 𝑥 ( Hom ‘ 𝑆 ) 𝑦 ) = ( 𝑥 𝐽 𝑦 ) ) |
| 14 | 13 | reseq2d | ⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → ( I ↾ ( 𝑥 ( Hom ‘ 𝑆 ) 𝑦 ) ) = ( I ↾ ( 𝑥 𝐽 𝑦 ) ) ) |
| 15 | 14 | mpoeq3dv | ⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 ( Hom ‘ 𝑆 ) 𝑦 ) ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 𝐽 𝑦 ) ) ) ) |
| 16 | 15 | opeq2d | ⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → 〈 ( I ↾ 𝐵 ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 ( Hom ‘ 𝑆 ) 𝑦 ) ) ) 〉 = 〈 ( I ↾ 𝐵 ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 𝐽 𝑦 ) ) ) 〉 ) |
| 17 | 4 16 | eqtrd | ⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → 𝐼 = 〈 ( I ↾ 𝐵 ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 𝐽 𝑦 ) ) ) 〉 ) |