This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity functor for a subcategory is an "inclusion functor" from the subcategory into its supercategory. (Contributed by AV, 29-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | idfusubc.s | |- S = ( C |`cat J ) |
|
| idfusubc.i | |- I = ( idFunc ` S ) |
||
| idfusubc.b | |- B = ( Base ` S ) |
||
| Assertion | idfusubc | |- ( J e. ( Subcat ` C ) -> I = <. ( _I |` B ) , ( x e. B , y e. B |-> ( _I |` ( x J y ) ) ) >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idfusubc.s | |- S = ( C |`cat J ) |
|
| 2 | idfusubc.i | |- I = ( idFunc ` S ) |
|
| 3 | idfusubc.b | |- B = ( Base ` S ) |
|
| 4 | 1 2 3 | idfusubc0 | |- ( J e. ( Subcat ` C ) -> I = <. ( _I |` B ) , ( x e. B , y e. B |-> ( _I |` ( x ( Hom ` S ) y ) ) ) >. ) |
| 5 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 6 | subcrcl | |- ( J e. ( Subcat ` C ) -> C e. Cat ) |
|
| 7 | id | |- ( J e. ( Subcat ` C ) -> J e. ( Subcat ` C ) ) |
|
| 8 | eqidd | |- ( J e. ( Subcat ` C ) -> dom dom J = dom dom J ) |
|
| 9 | 7 8 | subcfn | |- ( J e. ( Subcat ` C ) -> J Fn ( dom dom J X. dom dom J ) ) |
| 10 | 7 9 5 | subcss1 | |- ( J e. ( Subcat ` C ) -> dom dom J C_ ( Base ` C ) ) |
| 11 | 1 5 6 9 10 | reschom | |- ( J e. ( Subcat ` C ) -> J = ( Hom ` S ) ) |
| 12 | 11 | eqcomd | |- ( J e. ( Subcat ` C ) -> ( Hom ` S ) = J ) |
| 13 | 12 | oveqd | |- ( J e. ( Subcat ` C ) -> ( x ( Hom ` S ) y ) = ( x J y ) ) |
| 14 | 13 | reseq2d | |- ( J e. ( Subcat ` C ) -> ( _I |` ( x ( Hom ` S ) y ) ) = ( _I |` ( x J y ) ) ) |
| 15 | 14 | mpoeq3dv | |- ( J e. ( Subcat ` C ) -> ( x e. B , y e. B |-> ( _I |` ( x ( Hom ` S ) y ) ) ) = ( x e. B , y e. B |-> ( _I |` ( x J y ) ) ) ) |
| 16 | 15 | opeq2d | |- ( J e. ( Subcat ` C ) -> <. ( _I |` B ) , ( x e. B , y e. B |-> ( _I |` ( x ( Hom ` S ) y ) ) ) >. = <. ( _I |` B ) , ( x e. B , y e. B |-> ( _I |` ( x J y ) ) ) >. ) |
| 17 | 4 16 | eqtrd | |- ( J e. ( Subcat ` C ) -> I = <. ( _I |` B ) , ( x e. B , y e. B |-> ( _I |` ( x J y ) ) ) >. ) |