This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the identity functor of a category is the same as a constant functor to the category, then the base is a singleton. (Contributed by Zhi Wang, 19-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | idfudiag1.i | ⊢ 𝐼 = ( idfunc ‘ 𝐶 ) | |
| idfudiag1.l | ⊢ 𝐿 = ( 𝐶 Δfunc 𝐶 ) | ||
| idfudiag1.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| idfudiag1.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| idfudiag1.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| idfudiag1.k | ⊢ 𝐾 = ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) | ||
| idfudiag1.e | ⊢ ( 𝜑 → 𝐼 = 𝐾 ) | ||
| Assertion | idfudiag1bas | ⊢ ( 𝜑 → 𝐵 = { 𝑋 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idfudiag1.i | ⊢ 𝐼 = ( idfunc ‘ 𝐶 ) | |
| 2 | idfudiag1.l | ⊢ 𝐿 = ( 𝐶 Δfunc 𝐶 ) | |
| 3 | idfudiag1.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 4 | idfudiag1.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 5 | idfudiag1.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | idfudiag1.k | ⊢ 𝐾 = ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) | |
| 7 | idfudiag1.e | ⊢ ( 𝜑 → 𝐼 = 𝐾 ) | |
| 8 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 9 | 1 4 3 8 | idfuval | ⊢ ( 𝜑 → 𝐼 = 〈 ( I ↾ 𝐵 ) , ( 𝑝 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑝 ) ) ) 〉 ) |
| 10 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
| 11 | 2 3 3 4 5 6 4 8 10 | diag1a | ⊢ ( 𝜑 → 𝐾 = 〈 ( 𝐵 × { 𝑋 } ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) × { ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) } ) ) 〉 ) |
| 12 | 7 9 11 | 3eqtr3d | ⊢ ( 𝜑 → 〈 ( I ↾ 𝐵 ) , ( 𝑝 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑝 ) ) ) 〉 = 〈 ( 𝐵 × { 𝑋 } ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) × { ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) } ) ) 〉 ) |
| 13 | 4 | fvexi | ⊢ 𝐵 ∈ V |
| 14 | resiexg | ⊢ ( 𝐵 ∈ V → ( I ↾ 𝐵 ) ∈ V ) | |
| 15 | 13 14 | ax-mp | ⊢ ( I ↾ 𝐵 ) ∈ V |
| 16 | 13 13 | xpex | ⊢ ( 𝐵 × 𝐵 ) ∈ V |
| 17 | 16 | mptex | ⊢ ( 𝑝 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑝 ) ) ) ∈ V |
| 18 | 15 17 | opth1 | ⊢ ( 〈 ( I ↾ 𝐵 ) , ( 𝑝 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑝 ) ) ) 〉 = 〈 ( 𝐵 × { 𝑋 } ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) × { ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) } ) ) 〉 → ( I ↾ 𝐵 ) = ( 𝐵 × { 𝑋 } ) ) |
| 19 | 12 18 | syl | ⊢ ( 𝜑 → ( I ↾ 𝐵 ) = ( 𝐵 × { 𝑋 } ) ) |
| 20 | 5 | ne0d | ⊢ ( 𝜑 → 𝐵 ≠ ∅ ) |
| 21 | 19 20 | idfudiag1lem | ⊢ ( 𝜑 → 𝐵 = { 𝑋 } ) |