This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the identity functor of a category is the same as a constant functor to the category, then the base is a singleton. (Contributed by Zhi Wang, 19-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | idfudiag1.i | |- I = ( idFunc ` C ) |
|
| idfudiag1.l | |- L = ( C DiagFunc C ) |
||
| idfudiag1.c | |- ( ph -> C e. Cat ) |
||
| idfudiag1.b | |- B = ( Base ` C ) |
||
| idfudiag1.x | |- ( ph -> X e. B ) |
||
| idfudiag1.k | |- K = ( ( 1st ` L ) ` X ) |
||
| idfudiag1.e | |- ( ph -> I = K ) |
||
| Assertion | idfudiag1bas | |- ( ph -> B = { X } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idfudiag1.i | |- I = ( idFunc ` C ) |
|
| 2 | idfudiag1.l | |- L = ( C DiagFunc C ) |
|
| 3 | idfudiag1.c | |- ( ph -> C e. Cat ) |
|
| 4 | idfudiag1.b | |- B = ( Base ` C ) |
|
| 5 | idfudiag1.x | |- ( ph -> X e. B ) |
|
| 6 | idfudiag1.k | |- K = ( ( 1st ` L ) ` X ) |
|
| 7 | idfudiag1.e | |- ( ph -> I = K ) |
|
| 8 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 9 | 1 4 3 8 | idfuval | |- ( ph -> I = <. ( _I |` B ) , ( p e. ( B X. B ) |-> ( _I |` ( ( Hom ` C ) ` p ) ) ) >. ) |
| 10 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 11 | 2 3 3 4 5 6 4 8 10 | diag1a | |- ( ph -> K = <. ( B X. { X } ) , ( y e. B , z e. B |-> ( ( y ( Hom ` C ) z ) X. { ( ( Id ` C ) ` X ) } ) ) >. ) |
| 12 | 7 9 11 | 3eqtr3d | |- ( ph -> <. ( _I |` B ) , ( p e. ( B X. B ) |-> ( _I |` ( ( Hom ` C ) ` p ) ) ) >. = <. ( B X. { X } ) , ( y e. B , z e. B |-> ( ( y ( Hom ` C ) z ) X. { ( ( Id ` C ) ` X ) } ) ) >. ) |
| 13 | 4 | fvexi | |- B e. _V |
| 14 | resiexg | |- ( B e. _V -> ( _I |` B ) e. _V ) |
|
| 15 | 13 14 | ax-mp | |- ( _I |` B ) e. _V |
| 16 | 13 13 | xpex | |- ( B X. B ) e. _V |
| 17 | 16 | mptex | |- ( p e. ( B X. B ) |-> ( _I |` ( ( Hom ` C ) ` p ) ) ) e. _V |
| 18 | 15 17 | opth1 | |- ( <. ( _I |` B ) , ( p e. ( B X. B ) |-> ( _I |` ( ( Hom ` C ) ` p ) ) ) >. = <. ( B X. { X } ) , ( y e. B , z e. B |-> ( ( y ( Hom ` C ) z ) X. { ( ( Id ` C ) ` X ) } ) ) >. -> ( _I |` B ) = ( B X. { X } ) ) |
| 19 | 12 18 | syl | |- ( ph -> ( _I |` B ) = ( B X. { X } ) ) |
| 20 | 5 | ne0d | |- ( ph -> B =/= (/) ) |
| 21 | 19 20 | idfudiag1lem | |- ( ph -> B = { X } ) |