This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for a closed-below, open-above interval to be a subset of a closed-below, open-above interval. (Contributed by Glauco Siliprandi, 2-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | icossico2d.1 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) | |
| icossico2d.2 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) | ||
| icossico2d.3 | ⊢ ( 𝜑 → 𝐵 ≤ 𝐴 ) | ||
| Assertion | icossico2d | ⊢ ( 𝜑 → ( 𝐴 [,) 𝐶 ) ⊆ ( 𝐵 [,) 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | icossico2d.1 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) | |
| 2 | icossico2d.2 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) | |
| 3 | icossico2d.3 | ⊢ ( 𝜑 → 𝐵 ≤ 𝐴 ) | |
| 4 | 2 | xrleidd | ⊢ ( 𝜑 → 𝐶 ≤ 𝐶 ) |
| 5 | icossico | ⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝐵 ≤ 𝐴 ∧ 𝐶 ≤ 𝐶 ) ) → ( 𝐴 [,) 𝐶 ) ⊆ ( 𝐵 [,) 𝐶 ) ) | |
| 6 | 1 2 3 4 5 | syl22anc | ⊢ ( 𝜑 → ( 𝐴 [,) 𝐶 ) ⊆ ( 𝐵 [,) 𝐶 ) ) |