This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Derive eventual boundedness from separate upper and lower eventual bounds. (Contributed by Mario Carneiro, 15-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | icco1.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| icco1.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | ||
| icco1.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | ||
| icco1.4 | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) | ||
| icco1.5 | ⊢ ( 𝜑 → 𝑁 ∈ ℝ ) | ||
| icco1.6 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥 ) ) → 𝐵 ∈ ( 𝑀 [,] 𝑁 ) ) | ||
| Assertion | icco1 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | icco1.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| 2 | icco1.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | |
| 3 | icco1.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | |
| 4 | icco1.4 | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) | |
| 5 | icco1.5 | ⊢ ( 𝜑 → 𝑁 ∈ ℝ ) | |
| 6 | icco1.6 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥 ) ) → 𝐵 ∈ ( 𝑀 [,] 𝑁 ) ) | |
| 7 | elicc2 | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝐵 ∈ ( 𝑀 [,] 𝑁 ) ↔ ( 𝐵 ∈ ℝ ∧ 𝑀 ≤ 𝐵 ∧ 𝐵 ≤ 𝑁 ) ) ) | |
| 8 | 4 5 7 | syl2anc | ⊢ ( 𝜑 → ( 𝐵 ∈ ( 𝑀 [,] 𝑁 ) ↔ ( 𝐵 ∈ ℝ ∧ 𝑀 ≤ 𝐵 ∧ 𝐵 ≤ 𝑁 ) ) ) |
| 9 | 8 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥 ) ) → ( 𝐵 ∈ ( 𝑀 [,] 𝑁 ) ↔ ( 𝐵 ∈ ℝ ∧ 𝑀 ≤ 𝐵 ∧ 𝐵 ≤ 𝑁 ) ) ) |
| 10 | 6 9 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥 ) ) → ( 𝐵 ∈ ℝ ∧ 𝑀 ≤ 𝐵 ∧ 𝐵 ≤ 𝑁 ) ) |
| 11 | 10 | simp3d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥 ) ) → 𝐵 ≤ 𝑁 ) |
| 12 | 1 2 3 5 11 | ello1d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ) |
| 13 | 2 | renegcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐵 ∈ ℝ ) |
| 14 | 4 | renegcld | ⊢ ( 𝜑 → - 𝑀 ∈ ℝ ) |
| 15 | 10 | simp2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥 ) ) → 𝑀 ≤ 𝐵 ) |
| 16 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥 ) ) → 𝑀 ∈ ℝ ) |
| 17 | 2 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥 ) ) → 𝐵 ∈ ℝ ) |
| 18 | 16 17 | lenegd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥 ) ) → ( 𝑀 ≤ 𝐵 ↔ - 𝐵 ≤ - 𝑀 ) ) |
| 19 | 15 18 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥 ) ) → - 𝐵 ≤ - 𝑀 ) |
| 20 | 1 13 3 14 19 | ello1d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ∈ ≤𝑂(1) ) |
| 21 | 2 | o1lo1 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ∧ ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ∈ ≤𝑂(1) ) ) ) |
| 22 | 12 20 21 | mpbir2and | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ) |