This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Derive eventual boundedness from separate upper and lower eventual bounds. (Contributed by Mario Carneiro, 15-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | icco1.1 | |- ( ph -> A C_ RR ) |
|
| icco1.2 | |- ( ( ph /\ x e. A ) -> B e. RR ) |
||
| icco1.3 | |- ( ph -> C e. RR ) |
||
| icco1.4 | |- ( ph -> M e. RR ) |
||
| icco1.5 | |- ( ph -> N e. RR ) |
||
| icco1.6 | |- ( ( ph /\ ( x e. A /\ C <_ x ) ) -> B e. ( M [,] N ) ) |
||
| Assertion | icco1 | |- ( ph -> ( x e. A |-> B ) e. O(1) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | icco1.1 | |- ( ph -> A C_ RR ) |
|
| 2 | icco1.2 | |- ( ( ph /\ x e. A ) -> B e. RR ) |
|
| 3 | icco1.3 | |- ( ph -> C e. RR ) |
|
| 4 | icco1.4 | |- ( ph -> M e. RR ) |
|
| 5 | icco1.5 | |- ( ph -> N e. RR ) |
|
| 6 | icco1.6 | |- ( ( ph /\ ( x e. A /\ C <_ x ) ) -> B e. ( M [,] N ) ) |
|
| 7 | elicc2 | |- ( ( M e. RR /\ N e. RR ) -> ( B e. ( M [,] N ) <-> ( B e. RR /\ M <_ B /\ B <_ N ) ) ) |
|
| 8 | 4 5 7 | syl2anc | |- ( ph -> ( B e. ( M [,] N ) <-> ( B e. RR /\ M <_ B /\ B <_ N ) ) ) |
| 9 | 8 | adantr | |- ( ( ph /\ ( x e. A /\ C <_ x ) ) -> ( B e. ( M [,] N ) <-> ( B e. RR /\ M <_ B /\ B <_ N ) ) ) |
| 10 | 6 9 | mpbid | |- ( ( ph /\ ( x e. A /\ C <_ x ) ) -> ( B e. RR /\ M <_ B /\ B <_ N ) ) |
| 11 | 10 | simp3d | |- ( ( ph /\ ( x e. A /\ C <_ x ) ) -> B <_ N ) |
| 12 | 1 2 3 5 11 | ello1d | |- ( ph -> ( x e. A |-> B ) e. <_O(1) ) |
| 13 | 2 | renegcld | |- ( ( ph /\ x e. A ) -> -u B e. RR ) |
| 14 | 4 | renegcld | |- ( ph -> -u M e. RR ) |
| 15 | 10 | simp2d | |- ( ( ph /\ ( x e. A /\ C <_ x ) ) -> M <_ B ) |
| 16 | 4 | adantr | |- ( ( ph /\ ( x e. A /\ C <_ x ) ) -> M e. RR ) |
| 17 | 2 | adantrr | |- ( ( ph /\ ( x e. A /\ C <_ x ) ) -> B e. RR ) |
| 18 | 16 17 | lenegd | |- ( ( ph /\ ( x e. A /\ C <_ x ) ) -> ( M <_ B <-> -u B <_ -u M ) ) |
| 19 | 15 18 | mpbid | |- ( ( ph /\ ( x e. A /\ C <_ x ) ) -> -u B <_ -u M ) |
| 20 | 1 13 3 14 19 | ello1d | |- ( ph -> ( x e. A |-> -u B ) e. <_O(1) ) |
| 21 | 2 | o1lo1 | |- ( ph -> ( ( x e. A |-> B ) e. O(1) <-> ( ( x e. A |-> B ) e. <_O(1) /\ ( x e. A |-> -u B ) e. <_O(1) ) ) ) |
| 22 | 12 20 21 | mpbir2and | |- ( ph -> ( x e. A |-> B ) e. O(1) ) |